精英家教網 > 高中數學 > 題目詳情

某學校為了實現100萬元的生源利潤目標,準備制定一個激勵招生人員的獎勵方案:在生源利潤達到5萬元時,按生源利潤進行獎勵,且獎金y隨生源利潤x的增加而增加,但獎金總數不超過3萬元,同時獎金不超過利潤的20%.現有三個獎勵模型:y=0.2x,y=log5x,y=1.02x,其中哪個模型符合該校的要求?

解:作出函數y=3,y=0.2x,y=log5x,y=1.02x的圖象.
觀察圖象可知,在區(qū)間[5,100]上,y=0.2x,y=1.02x的圖象都有一部分在直線y=3的上方,只有y=log5x的圖象始終在y=3和y=0.2x的下方,這說明只有按模型y=log5x進行獎勵才符合學校的要求.
分析:作出函數y=3,y=0.2x,y=log5x,y=1.02x的圖象,利用圖象即可得到結論.
點評:本題考查函數模型的選擇與運用,考查數形結合的數學思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

某學校為了實現100萬元的生源利潤目標,準備制定一個激勵招生人員的獎勵方案:在生源利潤達到5萬元時,按生源利潤進行獎勵,且獎金y隨生源利潤x的增加而增加,但獎金總數不超過3萬元,同時獎金不超過利潤的20%.現有三個獎勵模型:y=0.2x,y=log5x,y=1.02x,其中哪個模型符合該校的要求?

查看答案和解析>>

科目:高中數學 來源:《3.2 函數模型及其應用》2013年同步練習(2)(解析版) 題型:解答題

某學校為了實現100萬元的生源利潤目標,準備制定一個激勵招生人員的獎勵方案:在生源利潤達到5萬元時,按生源利潤進行獎勵,且獎金y隨生源利潤x的增加而增加,但獎金總數不超過3萬元,同時獎金不超過利潤的20%.現有三個獎勵模型:y=0.2x,y=log5x,y=1.02x,其中哪個模型符合該校的要求?

查看答案和解析>>

同步練習冊答案