(2009•臺州二模)已知等差數(shù)列{an}的前n項和為Sn,且過點P(n,an)和Q(n+3,an+3)(n∈N*)的直線的斜率是4,若S1=3,則S6=
78
78
分析:本題是一個數(shù)列與直線結(jié)合的題,求數(shù)列的前六項的和,此類題求解,可用公式,也可用性質(zhì),由于數(shù)列是等差數(shù)列,且過點P(n,an)和Q(n+3,an+3)(n∈N*)的直線的斜率是4,故可以數(shù)列的項之間的關系,從中得出數(shù)列的公差,故可利用等差數(shù)列的前n項和公式求出S6的值
解答:解:由題意過點P(n,an)和Q(n+3,an+3)(n∈N*)的直線的斜率是4,
an+3-an
3
=4,即an+3-an=3d=12,d=4
又等差數(shù)列{an},S1=3,可得a1=3
所以S6=6a1+
n(n-1)
2
d=6×3+15×4=78
故答案為78
點評:本題考查數(shù)列與解析幾何的綜合解題的關鍵是將幾何中直線的斜率這一幾何特征轉(zhuǎn)化為數(shù)列的方程從中求出數(shù)列的公差,本題考查了轉(zhuǎn)化化歸的思想,綜合題的求解,將題設條件進行轉(zhuǎn)化,得到一般的結(jié)論是處理此類題中條件的常用方法,本題由形入數(shù)考查了數(shù)形結(jié)合的思想
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2009•臺州二模)已知兩條不同的直線m,l與三個不同的平面α,β,γ,滿足l=β∩γ,l∥α,m?α,m⊥γ,那么必有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•臺州二模)下圖是幾何體ABC-A1B1C1的三視圖和直觀圖.M是CC1上的動點,N,E分別是AM,A1B1的中點.
(1)求證:NE∥平面BB1C1C;
(2)當M在CC1的什么位置時,B1M與平面AA1C1C所成的角是30°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•臺州二模)一袋子中有大小、質(zhì)量均相同的10個小球,其中標記“開”字的小球有5個,標記“心”字的小球有3個,標記“樂”字的小球有2個.從中任意摸出1個球確定標記后放回袋中,再從中任取1個球.不斷重復以上操作,最多取3次,并規(guī)定若取出“樂”字球,則停止摸球.
求:(Ⅰ)恰好摸到2個“心”字球的概率;
(Ⅱ)摸球次數(shù)X的概率分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•臺州二模)將三個分別標有A,B,C的小球隨機地放入編號分別為1,2,3,4的四個盒子中,則第1號盒子內(nèi)有球的不同放法的總數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•臺州二模)已知向量
a
,
b
c
滿足|
a
|=1
,|
a
-
b
|=|
b
|
(
a
-
c
)
(
b
-
c
)=0
.若對每一確定的
b
,|
c
|
的最大值和最小值分別為m,n,則對任意
b
,m-n的最小值是( 。

查看答案和解析>>

同步練習冊答案