【題目】已知函數(shù)f(x)=4lnx﹣x+ , g(x)=2x2﹣bx+20,若對(duì)于任意x1∈(0,2),都存在x2∈[1,2],使得f(x1)≥g(x2)成立,則實(shí)數(shù)b的取值范圍是
【答案】[13,+∞)
【解析】∵函數(shù)f(x)=4lnx﹣x+ , (x>0)
∴f′(x)=﹣1﹣=﹣ ,
若f′(x)>0,1<x<3,f(x)為增函數(shù);
若f′(x)<0,x>3或0<x<1,f(x)為減函數(shù);
f(x)在x∈(0,2)上有極值,
f(x)在x=1處取極小值也是最小值f(x)min=f(1)=﹣1+3=2;
∵g(x)=2x2﹣bx+20=2(x﹣)2+4﹣ , 對(duì)稱(chēng)軸x= , x∈[1,2],
當(dāng)<1時(shí),g(x)在x=1處取最小值g(x)min=g(1)=2﹣b+20=22﹣b;
當(dāng)1<<2時(shí),g(x)在x=處取最小值g(x)min=g(b)=4﹣;
當(dāng)>2時(shí),g(x)在[1,2]上是減函數(shù),g(x)min=g(2)=8﹣2b+20=28﹣2b;
∵對(duì)任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),
∴只要f(x)的最小值大于等于g(x)的最小值即可,
當(dāng)<1時(shí),2≥22﹣b,解得b≥20,故b無(wú)解;
當(dāng)>2時(shí),2≥28﹣2b,解得b≥13,
綜上:b≥13,
所以答案是:[13,+∞).
【考點(diǎn)精析】本題主要考查了函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面給出四種說(shuō)法: ①用相關(guān)指數(shù)R2來(lái)刻畫(huà)回歸效果,R2越小,說(shuō)明模型的擬合效果越好;
②命題P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;
③設(shè)隨機(jī)變量X服從正態(tài)分布N(0,1),若P(x>1)=p,則P(﹣1<X<0)= ﹣p
④回歸直線一定過(guò)樣本點(diǎn)的中心( , ).
其中正確的說(shuō)法有(請(qǐng)將你認(rèn)為正確的說(shuō)法的序號(hào)全部填寫(xiě)在橫線上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=ex(3x﹣1)﹣ax+a,其中a<1,若有且只有一個(gè)整數(shù)x0使得f(x0)≤0,則a的取值范
圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)常數(shù)a∈R,集合A={x|(x﹣1)(x﹣a)≥0},B={x|x≥a﹣1},若A∪B=R,則a的取值范圍為( )
A.(﹣∞,2)
B.(﹣∞,2]
C.(2,+∞)
D.[2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)的定義域是(0,+∞),f'(x)為f(x)的導(dǎo)函數(shù),且滿(mǎn)足f(x)<f'(x),則不等式 f(2)的解集是( )
A.(﹣∞,2)∪(1,+∞)
B.(﹣2,1)
C.(﹣∞,﹣1)∪(2,+∞)
D.(﹣1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ,其中a,b,c∈R.
(Ⅰ)若a=b=1,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若a=0,且當(dāng)x≥0時(shí),f(x)≥1總成立,求實(shí)數(shù)b的取值范圍;
(Ⅲ)若a>0,b=0,若f(x)存在兩個(gè)極值點(diǎn)x1 , x2 , 求證;f(x1)+f(x2)<e.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,已知點(diǎn)A(1,1),B(3,3),點(diǎn)C在第二象限,且△ABC是以∠BAC為直角的等腰直角三角形.點(diǎn)P(x,y)在△ABC三邊圍城的區(qū)域內(nèi)(含邊界).
(1)若 + + = 求| |;
(2)設(shè) =m +n (m,n∈R),求m+2n的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱(chēng)為可入肺顆粒物.我國(guó)PM2.5標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值,即PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級(jí);在35微克/立方米~75微克/立方米之間空氣質(zhì)量為二級(jí);在75微克/立方米以上空氣質(zhì)量為超標(biāo). 某市環(huán)保局從市區(qū)2016年全年每天的PM2.5監(jiān)測(cè)數(shù)據(jù)中隨機(jī)抽取15天的數(shù)據(jù)作為樣本,監(jiān)測(cè)值如莖葉圖所示(十位為莖,個(gè)位為葉)
(Ⅰ)從這15天的數(shù)據(jù)中任取一天,求這天空氣質(zhì)量達(dá)到一級(jí)的概率;
(Ⅱ)從這15天的數(shù)據(jù)中任取3天的數(shù)據(jù),記ξ表示其中空氣質(zhì)量達(dá)到一級(jí)的天數(shù),求ξ的分布列;
(Ⅲ)以這15天的PM2.5的日均值來(lái)估計(jì)一年的空氣質(zhì)量情況,(一年按360天來(lái)計(jì)算),則一年中大約有多少天的空氣質(zhì)量達(dá)到一級(jí).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸正方向?yàn)闃O軸,已知曲線C1的參數(shù)方程為 (t為參數(shù)),C2的極坐標(biāo)方程為ρ2(1+sin2θ)=8,C3的極坐標(biāo)方程為θ=α,α∈[0,π),ρ∈R,
(1)若C1與C3的一個(gè)公共點(diǎn)為A(異于O點(diǎn)),且|OA|= ,求α;
(2)若C1與C3的一個(gè)公共點(diǎn)為A(異于O點(diǎn)),C2與C3的一個(gè)公共點(diǎn)為B,求|OA||OB|的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com