【題目】已知f(x)是定義在[﹣2,2]上的奇函數(shù),當x∈(0,2]時,f(x)=2x﹣1,函數(shù)g(x)=x2﹣2x+m.如果對于x1∈[﹣2,2],x2∈[﹣2,2],使得g(x2)=f(x1),則實數(shù)m的取值范圍是
【答案】[﹣5,﹣2]
【解析】解:∵f(x)是定義在[﹣2,2]上的奇函數(shù),∴f(0)=0,
當x∈(0,2]時,f(x)=2x﹣1∈(0,3],
則當x∈[﹣2,2]時,f(x)∈[﹣3,3],
若對于x1∈[﹣2,2],x2∈[﹣2,2],使得g(x2)=f(x1),
則等價為g(x)max≥3且g(x)min≤﹣3,
∵g(x)=x2﹣2x+m=(x﹣1)2+m﹣1,x∈[﹣2,2],
∴g(x)max=g(﹣2)=8+m,g(x)min=g(1)=m﹣1,
則滿足8+m≥3且m﹣1≤﹣3,
解得m≥﹣5且m≤﹣2,
故﹣5≤m≤﹣2,
所以答案是:[﹣5,﹣2]
【考點精析】利用特稱命題對題目進行判斷即可得到答案,需要熟知特稱命題:,,它的否定:,;特稱命題的否定是全稱命題.
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C:(5﹣m)x2+(m﹣2)y2=8(m∈R)
(1)若曲線C是焦點在x軸點上的橢圓,求m的取值范圍;
(2)設m=4,曲線c與y軸的交點為A,B(點A位于點B的上方),直線y=kx+4與曲線c交于不同的兩點M、N,直線y=1與直線BM交于點G.求證:A,G,N三點共線.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關系,現(xiàn)在從4月份的30天中隨機挑選了5天進行研究,且分別記錄了每天晝夜溫差與每100顆種子浸泡后的發(fā)芽數(shù),得到如下表格:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
溫差x/oC | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y/顆 | 23 | 25 | 30 | 26 | 16 |
(1)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數(shù)據(jù),請根據(jù)這5天中的另3天的數(shù)據(jù),求出關于的線性回歸方程
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的兩組檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠.
(參考公式,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=2|x﹣m|﹣1(m為實數(shù))為偶函數(shù),記a=f(log0.53),b=f(log25),c=f(2m),則a,b,c的大小關系為( )
A.a<b<c
B.c<a<b
C.a<c<b
D.c<b<a
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市教育與環(huán)保部門聯(lián)合組織該市中學參加市中學生環(huán)保知識團體競賽,根據(jù)比賽規(guī)則,某中學選拔出8名同學組成參賽隊,其中初中學部選出的3名同學有2名女生;高中學部選出的5名同學有3名女生,競賽組委會將從這8名同學中隨機選出4人參加比賽.
(1)設“選出的4人中恰有2名女生,而且這2名女生來自同一個學部”為事件A,求事件A的概率P(A);
(2)設X為選出的4人中女生的人數(shù),求隨機變量X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的圖形是由一個半徑為2的圓和兩個半徑為1的半圓組成,它們的圓心分別為O,O1 , O2 . 動點P從A點出發(fā)沿著圓弧按A→O→B→C→A→D→B的路線運動(其中A,O1 , O,O2 , B五點共線),記點P運動的路程為x,設y=|O1P|2 , y與x的函數(shù)關系為y=f(x),則y=f(x)的大致圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有2名男生、3名女生,在下列不同條件下,求不同的排列方法總數(shù).
(1)全體站成一排,甲不站排頭也不站排尾;
(2)全體站成一排,女生必須站在一起;
(3)全體站成一排,男生互不相鄰.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com