【題目】已知函數(shù)f(x)=,其中a∈R.
(I)當(dāng)a=1時(shí),求曲線y=f(x)在原點(diǎn)處的切線方程;
(II)求f(x)的極值.
【答案】(I)2x-y=0; (II)見解析.
【解析】試題分析:(1)求出在原點(diǎn)處的導(dǎo)數(shù)值,得斜率,即可求出切線方程;
(2)求出導(dǎo)數(shù),討論單調(diào)性得極值.
試題解析:
(I)解:當(dāng)a=1時(shí),f(x)=,f '(x)=-2.…………2分
由f '(0)=2,得曲線y=f(x)在原點(diǎn)處的切線方程是2x-y=0.………4分
(II)解:f '(x)=-2. ………6分
①當(dāng)a=0時(shí),f '(x)=.
所以f(x)在(0,+∞)單調(diào)遞增,(-∞,0)單調(diào)遞減. ………………7分
當(dāng)a≠0,f '(x)=-2a.
②當(dāng)a>0時(shí),令f '(x)=0,得x1=-a,x2=,f(x)與f '(x)的情況如下:
x | (-∞,x1) | x1 | (x1,x2) | x2 | (x2,+∞) |
f '(x) | - | 0 | + | 0 | - |
f(x) | ↘ | f(x1) | ↗ | f(x2) | ↘ |
故f(x)的單調(diào)減區(qū)間是(-∞,-a),(,+∞);單調(diào)增區(qū)間是(-a, ).
f(x)有極小值f(-a)=-1,有極大值f()=a2 ………10分
③當(dāng)a<0時(shí),f(x)與f '(x)的情況如下:
x | (-∞,x2) | x2 | (x2,x1) | x1 | (x1,+∞) |
f '(x) | + | 0 | - | 0 | + |
f(x) | ↗ | f(x2) | ↘ | f(x1) | ↗ |
所以f(x)的單調(diào)增區(qū)間是(-∞,);單調(diào)減區(qū)間是(-,-a),(-a,+ ∞)。
f(x)有極小值f(-a)=-1,有極大值f()=a2 ………………12分
綜上,a>0時(shí),f(x)在(-∞,-a),(,+∞)單調(diào)遞減;在(-a, )單調(diào)遞增.
a=0時(shí),f(x)在(0,+∞)單調(diào)遞增,在(-∞,0)單調(diào)遞減,f(x)有極小值f(-a)=-1,有極大值,f()=a2;a<0時(shí),f(x)在(-∞, ),(-a,+∞)單調(diào)遞增;在(,-a)單調(diào)遞減,f(x)有極小值f(-a)=-1,有極大值f()=a2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對(duì)本班50人進(jìn)行了問卷調(diào)查得到了如下列表:
喜愛打籃球 | 不喜愛打籃球 | 合計(jì) | |
男生 | 5 | ||
女生 | 10 | ||
合計(jì) | 50 |
已知在全班50人中隨機(jī)抽取1人,抽到喜愛打籃球的學(xué)生的概率為.
(1)請(qǐng)將上表補(bǔ)充完整(不用寫計(jì)算過程);
(2)能否有99.5%的把握認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由.
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式: ,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).
(1)求的值;
(2)判斷函數(shù)的單調(diào)性,并用定義證明;
(3)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C對(duì)邊的邊長分別是a,b,c.已知c=2,C=.
(1)若△ABC的面積等于,求a,b;
(2)若sinC+sin(B-A)=2sin2A,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題:①集合的子集個(gè)數(shù)有16個(gè);②定義在上的奇函數(shù)必滿足;③既不是奇函數(shù)又不是偶函數(shù);④偶函數(shù)的圖像一定與軸相交;⑤在上是減函數(shù)。
其中真命題的序號(hào)是 ______________(把你認(rèn)為正確的命題的序號(hào)都填上).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知=(sinx,cosx),=(cosφ,sinφ)(|φ|<).函數(shù)
f(x)= 且f(-x)=f(x).
(Ⅰ)求f(x)的解析式及單調(diào)遞增區(qū)間;
(Ⅱ)將f(x)的圖象向右平移單位得g(x)的圖象,若g(x)+1≤ax+cosx在x∈[0, ]上恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前3項(xiàng)和為6,前8項(xiàng)和為-4.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(4-an)qn-1 (q≠0,n∈N*),求數(shù)列{bn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=,其中a∈R.
(I)當(dāng)a=1時(shí),求曲線y=f(x)在原點(diǎn)處的切線方程;
(II)求f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的離心率為,且過點(diǎn).若點(diǎn)在橢圓上,則點(diǎn)稱為點(diǎn)的一個(gè)“橢點(diǎn)”.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線: 與橢圓相交于, 兩點(diǎn),且, 兩點(diǎn)的“橢點(diǎn)”分別為, ,以為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),試求的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com