(本小題滿分14分)某公司生產(chǎn)的新產(chǎn)品的成本是2元/件,售價是3元/件,
年銷售量為10萬件,為了獲得更好的效益,公司準(zhǔn)備拿出一定的資金做廣告,根據(jù)經(jīng)驗,每年投入的廣告費是(萬元)時,產(chǎn)品的銷售量將是原銷售量的倍,且的二次函數(shù),它們的關(guān)系如下表:


···
1
2
···
5
···

···
1.5
1.8
···
1.5
···
 
(2)求的函數(shù)關(guān)系式;
(3)如果利潤=銷售總額成本費廣告費,試寫出年利潤S(萬元)與廣告費(萬元)的函數(shù)關(guān)系式;并求出當(dāng)廣告費為多少萬元時,年利潤S最大.

(1)
(2)當(dāng)廣告費x為5萬元時,年利潤S最大.

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分) 計算下列各式的值:
(1) ;
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在△ABC中,內(nèi)角A,B,C所對邊長分別為,.
(1)求的最大值及的取值范圍;
(2)求函數(shù)的最值. (本題滿分12分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),若 

(1)求函數(shù)的解析式;
(2)畫出函數(shù)的圖象,并說出函數(shù)的單調(diào)區(qū)間;
(3)若,求相應(yīng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分)某產(chǎn)品原來的成本為1000元/件,售價為1200元/件,年銷售量為1萬件。由于市場飽和顧客要求提高,公司計劃投入資金進行產(chǎn)品升級。據(jù)市場調(diào)查,若投入萬元,每件產(chǎn)品的成本將降低元,在售價不變的情況下,年銷售量將減少萬件,按上述方式進行產(chǎn)品升級和銷售,扣除產(chǎn)品升級資金后的純利潤記為(單位:萬元).(純利潤=每件的利潤×年銷售量-投入的成本)
(Ⅰ)求的函數(shù)解析式;
(Ⅱ)求的最大值,以及取得最大值時的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),判斷上的單調(diào)性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題12分)建造一個容積為,深為的長方體無蓋水池,如果池底和池壁的造價分別為每平方米120元和80元,那么水池的最低總造價是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
已知函數(shù),設(shè)函數(shù),
(1)若,且函數(shù)的值域為,求的表達(dá)式.
(2)若上是單調(diào)函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)若二次函數(shù)滿足,且.(1)求的解析式;(2)若在區(qū)間上,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案