【題目】(2017·貴州適應(yīng)性考試)如圖,在正方體ABCDA1B1C1D1中,點(diǎn)P是線段A1C1上的動(dòng)點(diǎn),則三棱錐PBCD 的俯視圖與正視圖面積之比的最大值為(  )

A. 1 B.

C. D. 2

【答案】D

【解析】正視圖,底面B,C,D三點(diǎn),其中DC重合,隨著點(diǎn)P的變化,其正視圖均是三角形且點(diǎn)P在正視圖中的位置在邊B1C1上移動(dòng),由此可知,設(shè)正方體的棱長(zhǎng)為a,則S正視圖a2;設(shè)A1C1的中點(diǎn)為O,隨著點(diǎn)P的移動(dòng),在俯視圖中,易知當(dāng)點(diǎn)POC1上移動(dòng)時(shí),S俯視圖就是底面三角形BCD的面積,當(dāng)點(diǎn)POA1上移動(dòng)時(shí),點(diǎn)P越靠近A1,俯視圖的面積越大,當(dāng)?shù)竭_(dá)A1的位置時(shí),俯視圖為正方形,此時(shí)俯視圖的面積最大,S俯視圖a2,所以三棱錐PBCD 的俯視圖與正視圖面積之比的最大值為=2. 選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)當(dāng)時(shí),求函數(shù)的圖象在處的切線方程;

(2)若函數(shù)在定義域上為單調(diào)增函數(shù)

①求最大整數(shù)值;

②證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知兩個(gè)正方形ABCDDCEF不在同一平面內(nèi),M,N分別為AB,DF的中點(diǎn).

(1)若平面ABCD⊥平面DCEF,求直線MN與平面DCEF所成角的正弦值;

(2)用反證法證明:直線MEBN是兩條異面直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: 的焦點(diǎn)在x軸上,A是E的左頂點(diǎn),斜率為k(k0)的直線交E于A,M兩點(diǎn),點(diǎn)N在E上,MANA

(1)當(dāng)t=4,|AM|=|AN|時(shí),求AMN的面積;

(2)當(dāng)2|AM|=|AN|時(shí),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

)求的單調(diào)區(qū)間.

)證明:當(dāng)時(shí),方程在區(qū)間上只有一個(gè)零點(diǎn).

)設(shè),其中恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐PABC中,不能證明APBC的條件是(  )

A. APPBAPPC

B. APPB,BCPB

C. 平面BPC⊥平面APCBCPC

D. AP⊥平面PBC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017·泰安模擬)如圖,在正四棱柱ABCDA1B1C1D1中,EAD的中點(diǎn),FB1C1的中點(diǎn).

(1)求證:A1F∥平面ECC1;

(2)在CD上是否存在一點(diǎn)G,使BG⊥平面ECC1?若存在,請(qǐng)確定點(diǎn)G的位置,并證明你的結(jié)論,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著“中華好詩(shī)詞”節(jié)目的播出,掀起了全民誦讀傳統(tǒng)詩(shī)詞經(jīng)典的熱潮.某大學(xué)社團(tuán)為調(diào)查大學(xué)生對(duì)于“中華詩(shī)詞”的喜好,在該校隨機(jī)抽取了40名學(xué)生,記錄他們每天學(xué)習(xí)“中華詩(shī)詞”的時(shí)間,并整理得到如下頻率分布直方圖:

根據(jù)學(xué)生每天學(xué)習(xí)“中華詩(shī)詞”的時(shí)間,可以將學(xué)生對(duì)于“中華詩(shī)詞”的喜好程度分為三個(gè)等級(jí) :

學(xué)習(xí)時(shí)間

(分鐘/天)

等級(jí)

一般

愛好

癡迷

()的值;

(Ⅱ) 從該大學(xué)的學(xué)生中隨機(jī)選出一人,試估計(jì)其“愛好”中華詩(shī)詞的概率;

(Ⅲ) 假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的右端點(diǎn)值代替,試估計(jì)樣本中40名學(xué)生每人每天學(xué)習(xí)“中華詩(shī)詞”的時(shí)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,圓的極坐標(biāo)方程為: .若以極點(diǎn)為原點(diǎn),極軸所在直線為軸建立平面直角坐標(biāo)系.

(Ⅰ)求圓的參數(shù)方程;

(Ⅱ)在直角坐標(biāo)系中,點(diǎn)是圓上動(dòng)點(diǎn),試求的最大值,并求出此時(shí)點(diǎn)的直角坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案