定義在R上的奇函數(shù)f(x)為減函數(shù),若a+b≤0,給出下列不等式:
①f(a)•f(-a)≤0;
②f(a)+f(b)≤f(-a)+f(-b);
③f(b)•f(-b)≥0;
④f(a)+f(b)≥f(-a)+f(-b);
⑤f(a)+f(b)≤0;
⑥f(a)+f(b)≥0.
其中正確的是
 
(把你認(rèn)為正確的不等式的序號(hào)全寫上).
考點(diǎn):奇偶性與單調(diào)性的綜合
專題:綜合題,函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)奇函數(shù)的性質(zhì),可以證明對(duì)任意的x,都有f(x)•f(-x)=-[f(x)]2≤0,由此可得①正確而③不正確;再根據(jù)奇函數(shù)f(x)是定義在R上的減函數(shù),結(jié)合a+b≤0可得f(a)≥f(-b),同理f(b)≥f(-a),相加即得:f(a)+f(b)≥f(-a)+f(-b),從而得到④正確而②不正確.f(a)≥f(-b),可得f(a)≥-f(b),即⑥正確,⑤不正確.
解答: 解:∵函數(shù)f(x)為奇函數(shù)
∴對(duì)任意的x∈R,都有f(-x)=-f(x),可得f(x)•f(-x)=-[f(x)]2≤0,
由此可得①f(a)•f(-a)≤0正確,而③f(b)•f(-b)≥0不正確;
∵a+b≤0,即a≤-b,且函數(shù)f(x)為定義在R上的減函數(shù),
∴f(a)≥f(-b),同理可得f(b)≥f(-a)
兩式相加,得:f(a)+f(b)≥f(-a)+f(-b).
因此,④正確而②不正確.
∵f(a)≥f(-b),∴f(a)≥-f(b),
∴f(a)+f(b)≥0,即⑥正確,⑤不正確.
故答案為:①④⑥.
點(diǎn)評(píng):本題給出抽象函數(shù),在已知單調(diào)性和奇偶性的前提下,判斷有關(guān)不等式是否正確,考查了函數(shù)的簡(jiǎn)單性質(zhì)及其應(yīng)用的知識(shí)點(diǎn),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

不等式(x+y-2)(x-y+1)≥0表示的平面區(qū)域時(shí)( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}中,a2>a3=1,則使不等式 (a1-
1
a1
)+(a2-
1
a2
)+(a3+
1
a3
)+…+(an-
1
an
)>0成立的最大自然數(shù)n是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的前n項(xiàng)和記為Sn.已知a8=26,a15=40.
(1)求通項(xiàng)an;
(2)若Sn=350,求n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=-2,an+1=2an+n,則a3=( 。
A、-6B、-5C、-4D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x<1,則x+
1
x-1
的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x>0,y>0.且
x
3
+
y
4
=1,則xy的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}
(1)當(dāng)A=B時(shí),求實(shí)數(shù)a的值;
(2)當(dāng)A∩C=∅,但A∩B≠∅時(shí),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,a1+a2=162,a3+a4=18,那么a5+a6=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案