【題目】如圖,已知△的內(nèi)角、、的對邊分別為、,其中,且,延長線段到點,使得,.

1)求證:是直角;

2)求的值.

【答案】1)證明見解析;(2.

【解析】

1)根據(jù)正弦定理以及二倍角公式即可證明,

2)如圖所示:過點CCEAC,根據(jù)平行線分線段成比例定理,設(shè)CEx,則AB5x,ADx,再根據(jù)勾股定理可得x的值,再由正弦定理,sinD,再根據(jù)同角的三角函數(shù)的關(guān)系即可求出答案.

1)由正弦定理可得sinBcosBsinCcosC,

sin2Bsin2C

bc,

2B+2C180°,

B+C90°,

∴∠BAC180°﹣90°=90°,

2)如圖所示:過點CCEAC,

BC4,BC4CD

CD1,BD5,

∵∠BAC90°,

CEAB,

,

設(shè)CEx,則AB5x,

∵∠CAD30°,

AE2x,ACx,

DEx,

AB2+AC2BC2,

25x2+3x216,

解得x

在△CED中,∠CED120°,CECD1,

由正弦定理可得

sinD,

cosD

tanD

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={1,2,3,4}和集合B={1,2,3,,n},其中n≥5.從集合A中任取三個不同的元素,其中最小的元素用S表示;從集合B中任取三個不同的元素,其中最大的元素用T表示.記XTS.

(1)當n5時,求隨機變量X的概率分布和數(shù)學期望;

(2)求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)上的單調(diào)性;

(2)若存在,使得恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ln+ax﹣1(a≠0).

(I)求函數(shù)f(x)的單調(diào)區(qū)間;

(Ⅱ)已知g(x)+xf(x)=﹣x,若函數(shù)g(x)有兩個極值點x1,x2(x1<x2),求證:g(x1)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是遞增數(shù)列,數(shù)列滿足:對任意,存在,使得,則稱的“分隔數(shù)列”.

(1)設(shè),證明:數(shù)列的分隔數(shù)列;

(2)設(shè)的前n項和,,判斷數(shù)列是否是數(shù)列的分隔數(shù)列,并說明理由;

(3)設(shè)的前n項和,若數(shù)列的分隔數(shù)列,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓:的左、右點分別為在橢圓上,且

(1)求橢圓的方程;

(2)過點(1,0)作斜率為的直線交橢圓M、N兩點,若求直線的方程;

(3)P、Q為橢圓上的兩個動點,為坐標原點,若直線的斜率之積為求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓,左頂點為,經(jīng)過點,過點作斜率為的直線交橢圓于點,交軸于點.

1)求橢圓的方程;

2)已知的中點,,證明:對于任意的都有恒成立;

3)若過點作直線的平行線交橢圓于點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】統(tǒng)計學中將個數(shù)的和記作

1)設(shè),求;

2)是否存在互不相等的非負整數(shù),,使得成立,若存在,請寫出推理的過程;若不存在請證明;

3)設(shè)是不同的正實數(shù),,對任意的,都有,判斷是否為一個等比數(shù)列,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于定義在上的函數(shù),如果存在兩條平行直線,使得對于任意,都有恒成立,那么稱函數(shù)是帶狀函數(shù),若之間的最小距離存在,則稱為帶寬.

1)判斷函數(shù)是不是帶狀函數(shù)?如果是,指出帶寬(不用證明);如果不是,說明理由;

2)求證:函數(shù))是帶狀函數(shù);

3)求證:函數(shù))為帶狀函數(shù)的充要條件是.

查看答案和解析>>

同步練習冊答案