已知f(x)的定義域?yàn)椋?1,1),又f(x)是奇函數(shù)且是減函數(shù),若f(m-2)+f(2m-3)≥0,那么實(shí)數(shù)m的取值范圍是________.

(1,
分析:通過分析函數(shù)定義域的范圍,以及函數(shù)是奇函數(shù)且是減函數(shù)可以列出不等式,從而求解.
解答:∵f(x)的定義域?yàn)椋?1,1)

有∵f(x)是奇函數(shù)且是減函數(shù)
∴f(m-2)+f(2m-3)≥0
f(m-2)≥-f(2m-3)=f(3-2m)
即m-2≤3-2m ②
聯(lián)合①②解得:
1<m<
所以實(shí)數(shù)m的取值范圍是(1,
點(diǎn)評:考查函數(shù)定義域的作用以及奇函數(shù)和減函數(shù)的性質(zhì),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)的定義域?yàn)閇-1,2),則f(|x|)的定義域?yàn)椋ā 。?/div>
A、[-1,2)B、[-1,1]C、(-2,2)D、[-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)的定義域是[0,1],且f(x+m)+f(x-m)的定義域是∅,則正數(shù)m的取值范圍是
m>
1
2
m>
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)的定義域?yàn)閧x∈R|x≠0},且f(x)是奇函數(shù),當(dāng)x>0時f(x)=-x2+bx+c,若f(1)=f(3),f(2)=2.
(1)求b,c的值;及f(x)在x>0時的表達(dá)式;
(2)求f(x)在x<0時的表達(dá)式;
(3)若關(guān)于x的方程f(x)=ax(a∈R)有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)的定義域?yàn)镽+,且f(x+y)=f(x)+f(y)對一切正實(shí)數(shù)x,y都成立,若f(8)=4,則f(2)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)的定義域?yàn)閇0,1],求函數(shù)y=f(x+a)+f(x-a)(0<a<
12
)的定義域.

查看答案和解析>>

同步練習(xí)冊答案