直三棱柱ABC-A1B1C1中,AC=BC=BB1=1,AB1=
3
.求三棱錐A1-AB1C的體積
 
分析:先求底面邊長AB,再求底面面積,然后求體積.
解答:解:直三棱柱ABC-A1B1C1中,AC=BC=BB1=1,AB1=
3

所以AB=
(
3
)
2
-1
=
2
底面是等腰直角三角形,
底面面積是
1
2
,棱柱的高是 1
三棱錐A1-AB1C的體積:
1
:6

故答案為:
1
6
點評:本題考查棱柱的體積求法,考查學生的空間想象能力,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網直三棱柱ABC-A1B1C1中,AC=BC=BB1=1,AB1=
3

(1)求證:平面AB1C⊥平面B1CB;    
(2)求三棱錐A1-AB1C的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=BB1=a,直線B1C與平面ABC成30°角.
(1)求證:平面B1AC⊥平面ABB1A1;   
(2)求C1到平面B1AC的距離;   
(3)求三棱錐A1-AB1C的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直三棱柱ABC-A1 B1 C1中,AA1=1,AC⊥BC,AC=BC=2,則BC1與平面AB B1 A1所成角的正弦值是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

如圖,在直三棱柱ABC-A1 B1 C1中,AA1=1,AC⊥BC,AC=BC=2,則BC1與平面AB B1 A1所成角的正弦值是


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年重慶八中高三(下)第二次月考數(shù)學試卷(理科)(解析版) 題型:選擇題

如圖,在直三棱柱ABC-A1 B1 C1中,AA1=1,AC⊥BC,AC=BC=2,則BC1與平面AB B1 A1所成角的正弦值是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案