【題目】如圖在四棱錐中,底面為矩形,,,平面平面,為等腰直角三角形,且,為底面的中心.
(1)求異面直線與所成角的余弦值;
(2)若為中點,在棱上,若,,且二面角的正弦值為,求實數(shù)的值.
【答案】(1).(2).
【解析】
(1)根據(jù)面面,,得到面,以為原點建立空間直角坐標系,得到,的坐標,根據(jù)向量夾角公式,得到異面直線與所成角的余弦值;(2)設(shè),從而得到點坐標,結(jié)合(1)取平面的法向量,求出平面的法向量為,通過法向量表示出二面角的余弦值,根據(jù)其正弦值為,列出關(guān)于的方程,求出的值.
(1)∵為等腰直角三角形,
∴,
∵面面,
面面,面
∴面,
∵底面為矩形, 所以,,三條線兩兩垂直.
以為原點,,,分別為,,軸建立空間直角坐標系,
知,,,,,
,,
,
所以異面直線與所成角的余弦值為.
(2)結(jié)合(1)知,面,
取平面的法向量.
∵,,,
∴,∴,
設(shè)平面的法向量為,
又,,
,即,
令,得,
又因為二面角的正弦值為,
所以,
而,
即,
解得.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自貢農(nóng)科所實地考察,研究發(fā)現(xiàn)某貧困村適合種植,兩種藥材,可以通過種植這兩種藥材脫貧.通過大量考察研究得到如下統(tǒng)計數(shù)據(jù):藥材的畝產(chǎn)量約為300公斤,其收購價格處于上漲趨勢,最近五年的價格如下表:
編號 | 1 | 2 | 3 | 4 | 5 |
年份 | 2015 | 2016 | 2017 | 2018 | 2019 |
單價(元/公斤) | 18 | 20 | 23 | 25 | 29 |
藥材的收購價格始終為20元/公斤,其畝產(chǎn)量的頻率分布直方圖如下:
(1)若藥材的單價(單位:元/公斤)與年份編號具有線性相關(guān)關(guān)系,請求出關(guān)于的回歸直線方程,并估計2020年藥材的單價;
(2)用上述頻率分布直方圖估計藥材的平均畝產(chǎn)量,若不考慮其他因素,試判斷2020年該村應(yīng)種植藥材還是藥材?并說明理由.
參考公式:,(回歸方程中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點為,過且斜率為的直線與交于,兩點,.
(1)求的方程;
(2)求過點,且與的準線相切的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在上單調(diào)遞減,求的取值范圍;
(2)若在處取得極值,判斷當時,存在幾條切線與直線平行,請說明理由;
(3)若有兩個極值點,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:()的焦距為4,其短軸的兩個端點與長軸的一個端點構(gòu)成正三角形.
(1)求橢圓C的標準方程;
(2)設(shè)F為橢圓C的左焦點,T為直線上任意一點,過F作TF的垂線交橢圓C于點P,Q.
(i)證明:OT平分線段PQ(其中O為坐標原點);
(ii)當最小時,求點T的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在單位正方體中,點P在線段上運動,給出以下四個命題:
異面直線與間的距離為定值;
三棱錐的體積為定值;
異面直線與直線所成的角為定值;
二面角的大小為定值.
其中真命題有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,點的極坐標為.
(1)求的直角坐標方程和的直角坐標;
(2)設(shè)與交于,兩點,線段的中點為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】影響消費水平的原因很多,其中重要的一項是工資收入.研究這兩個變量的關(guān)系的一個方法是通過隨機抽樣的方法,在一定范圍內(nèi)收集被調(diào)查者的工資收入和他們的消費狀況.下面的數(shù)據(jù)是某機構(gòu)收集的某一年內(nèi)上海、江蘇、浙江、安徽、福建五個地區(qū)的職工平均工資與城鎮(zhèn)居民消費水平(單位:萬元).
地區(qū) | 上海 | 江蘇 | 浙江 | 安徽 | 福建 |
職工平均工資 | 9.8 | 6.9 | 6.4 | 6.2 | 5.6 |
城鎮(zhèn)居民消費水平 | 6.6 | 4.6 | 4.4 | 3.9 | 3.8 |
(1)利用江蘇、浙江、安徽三個地區(qū)的職工平均工資和他們的消費水平,求出線性回歸方程,其中,;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過1萬,則認為得到的線性回歸方程是可靠的,試問所得的線性回歸方程是否可靠?(的結(jié)果保留兩位小數(shù))
(參考數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著社會的進步,經(jīng)濟的發(fā)展,道路上的汽車越來越多,隨之而來的交通事故也增多.據(jù)有關(guān)部門調(diào)查,發(fā)生車禍的駕駛員中尤其是21 歲以下年輕人所占比例居高,因此交通管理有關(guān)部門,對2018 年參加駕照考試的21 歲以下學(xué)員隨機抽取10 名學(xué)員,對他們參加的科目三(道路駕駛)和科目四(安全文明駕駛相關(guān)知識)進行兩輪現(xiàn)場測試,并把兩輪測試成績的平均分作為該名學(xué)員的抽測成績.記錄的數(shù)據(jù)如下:
(1)從2018年參加駕照考試的21歲以下學(xué)員中隨機選取一名學(xué)員,試估計這名學(xué)員抽測成績大于或等于90分的概率;
(2)根據(jù)規(guī)定,科目三和科目四測試成績均達到90分以上(含90)才算測試合格.
(i)從抽測的1號至5號學(xué)員中任取兩名學(xué)員,記為學(xué)員測試合格的人數(shù),求的分布列和數(shù)學(xué)期望 ;
(ii) 記抽取的10名學(xué)員科目三和科目四測試成績的方差分別為,,試比較與的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com