如圖,在直三棱柱中,已知,

(1)求異面直線夾角的余弦值;
(2)求二面角平面角的余弦值.
(1),(2)

試題分析:(1)利用空間向量求線線角,關(guān)鍵在于正確表示各點(diǎn)的坐標(biāo). 以為正交基底,建立空間直角坐標(biāo)系.則,,,,所以,,因此,所以異面直線夾角的余弦值為.(2)利用空間向量求二面角,關(guān)鍵在于求出一個法向量. 設(shè)平面的法向量為,則 即取平面的一個法向量為;同理可得平面的一個法向量為;由兩向量數(shù)量積可得二面角平面角的余弦值為
試題解析:

如圖,以為正交基底,建立空間直角坐標(biāo)系
,,,所以,,
,
(1)因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/201408240451353012086.png" style="vertical-align:middle;" />,
所以異面直線夾角的余弦值為.                    4分
(2)設(shè)平面的法向量為,
 即
取平面的一個法向量為;
 
所以二面角平面角的余弦值為.                       10分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD中,PA⊥平面ABCD,E為BD的中點(diǎn),G為PD的中點(diǎn),△DAB ≌△DCB,EA=EB=AB=1,PA=,連接CE并延長交AD于F.

(1)求證:AD⊥平面CFG;
(2)求平面BCP與平面DCP的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知四棱錐P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=AB.Q是PC上的一點(diǎn),且PA∥平面QBD.

⑴確定Q的位置;
⑵求二面角Q-BD-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在四棱錐P-ABCD中,側(cè)面PCD底面ABCD,PDCD,底面ABCD是直角梯形,AB∥DC,,,

(1)求證:BC平面PBD:
(2)求直線AP與平面PDB所成角的正弦值;
(3)設(shè)E為側(cè)棱PC上異于端點(diǎn)的一點(diǎn),,試確定的值,使得二面角E-BD-P的余弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在空間直角坐標(biāo)系O-xyz中,平面OAB的一個法向量為n=(2,-2,1),已知點(diǎn)P(-1,3,2),則點(diǎn)P到平面OAB的距離d等于                  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在長方體ABCD-A1B1C1D1中,AB=2,BC=AA1=1,則D1C1與平面A1BC1所成角的正弦值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a、bc三個向量共面,則實(shí)數(shù)λ等于________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知正方體ABCD-A1B1C1D1中,點(diǎn)E為上底面A1C1的中心,若+x+y,則x、y的值分別為(  )
A.x=1,y=1B.x=1,y=
C.x=,y=D.x=,y=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

的距離除以到的距離的值為的點(diǎn)的坐標(biāo)滿足(    )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案