【題目】已知點(diǎn)(x,y)是區(qū)域 , (n∈N*)內(nèi)的點(diǎn),目標(biāo)函數(shù)z=x+y,z的最大值記作zn . 若數(shù)列{an}的前n項(xiàng)和為Sn , a1=1,且點(diǎn)(Sn , an)在直線(xiàn)zn=x+y上.
證明:數(shù)列{an﹣2}為等比數(shù)列
【答案】解:∵目標(biāo)函數(shù)對(duì)應(yīng)直線(xiàn)l:z=x+y,
區(qū)域,(n∈N*)表示以x軸、y軸和直線(xiàn)x+2y=2n為三邊的三角形,
∴當(dāng)x=2n,y=0時(shí),z的最大值z(mì)n=2n
∵(Sn , an)在直線(xiàn)zn=x+y上
∴zn=Sn+an , 可得Sn=2n﹣an ,
當(dāng)n≥2時(shí),可得an=Sn﹣Sn﹣1=(2n﹣an)﹣[2(n﹣1)﹣an﹣1]
化簡(jiǎn)整理,得2an=an﹣1+2
因此,an﹣2=(an﹣1+2)﹣2=(an﹣1﹣2)
當(dāng)n=1時(shí),an﹣2=a1﹣2=﹣1
∴數(shù)列{an﹣2}是以﹣1為首項(xiàng),公比q=的等比數(shù)列;
【解析】根據(jù)線(xiàn)性規(guī)劃原理,可得z的最大值z(mì)n=2n,從而得到Sn=2n﹣an . 運(yùn)用數(shù)列前n項(xiàng)和Sn與an的關(guān)系,算出2an=an﹣1+2,由此代入數(shù)列{an﹣2}再化簡(jiǎn)整理,即可得到{an﹣2}是以﹣1為首項(xiàng),公比q=的等比數(shù)列;
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等比關(guān)系的確定的相關(guān)知識(shí),掌握等比數(shù)列可以通過(guò)定義法、中項(xiàng)法、通項(xiàng)公式法、前n項(xiàng)和法進(jìn)行判斷.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面內(nèi)一動(dòng)點(diǎn)與兩定點(diǎn)和連線(xiàn)的斜率之積等于.
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)設(shè)直線(xiàn): ()與軌跡交于、兩點(diǎn),線(xiàn)段的垂直平分線(xiàn)交軸于點(diǎn),當(dāng)變化時(shí),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+bx+c,曲線(xiàn)y=f(x)在點(diǎn)x=0處的切線(xiàn)為l:4x+y﹣5=0,若x=﹣2時(shí),y=f(x)有極值.
(1)求a,b,c的值;
(2)求y=f(x)在[﹣3,1]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出50個(gè)數(shù),1,2,4,7,11,…,其規(guī)律是:第1個(gè)數(shù)是1,第2個(gè)數(shù)比第1個(gè)數(shù)大1,第3個(gè)數(shù)比第2個(gè)數(shù)大2,第4個(gè)數(shù)比第3個(gè)數(shù)大3,…,以此類(lèi)推.要求計(jì)算這50個(gè)數(shù)的和.將右邊給出的程序框圖補(bǔ)充完整,
(1)___________________ (2)_______________________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求在上的最大值和最小值;
(2)設(shè)曲線(xiàn)與軸正半軸的交點(diǎn)為處的切線(xiàn)方程為,求證:對(duì)于任意的正實(shí)數(shù),都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)一年購(gòu)進(jìn)某種貨物900噸,每次都購(gòu)進(jìn)x噸,運(yùn)費(fèi)為每次9萬(wàn)元,一年的總存儲(chǔ)費(fèi)用為9x萬(wàn)元.
(1)要使一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和最小,則每次購(gòu)買(mǎi)多少?lài)崳?/span>
(2)要使一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和不超過(guò)585萬(wàn)元,則每次購(gòu)買(mǎi)量在什么范圍?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班級(jí)舉行一次知識(shí)競(jìng)賽活動(dòng),活動(dòng)分為初賽和決賽兩個(gè)階段。現(xiàn)將初賽答卷成績(jī)(得分均為整數(shù),滿(mǎn)分為100分)進(jìn)行統(tǒng)計(jì),制成如下頻率分布表.
分?jǐn)?shù)(分?jǐn)?shù)段) | 頻數(shù)(人數(shù)) | 頻率 |
[60,70) | ① | 0.16 |
[70,80) | 22 | ② |
[80,90) | 14 | 0.28 |
[90,100] | ③ | ④ |
合 計(jì) | 50 | 1 |
(1)填充頻率分布表中的空格(在解答中直接寫(xiě)出對(duì)應(yīng)空格序號(hào)的答案);
(2)決賽規(guī)則如下:參加決賽的每位同學(xué)依次口答4道小題,答對(duì)2道題就終止答題,并獲得一等獎(jiǎng)。如果前三道題都答錯(cuò),就不再答第四題。某同學(xué)進(jìn)入決賽,每道題答對(duì)的概率的值恰好與頻率分布表中不少于80分的頻率的值相同.
①求該同學(xué)恰好答滿(mǎn)4道題而獲得一等獎(jiǎng)的概率;
②記該同學(xué)決賽中答題個(gè)數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司一年經(jīng)銷(xiāo)某種商品,年銷(xiāo)售量400噸,每噸進(jìn)價(jià)5萬(wàn)元,每噸銷(xiāo)售價(jià)8萬(wàn)元.全年進(jìn)貨若干次,每次都購(gòu)買(mǎi)x噸,運(yùn)費(fèi)為每次2萬(wàn)元,一年的總存儲(chǔ)費(fèi)用為2x萬(wàn)元.
(1)求該公司經(jīng)銷(xiāo)這種商品一年的總利潤(rùn)y與x的函數(shù)關(guān)系;
(2)要使一年的總利潤(rùn)最大,則每次購(gòu)買(mǎi)量為多少?并求出最大利潤(rùn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com