【題目】已知直線與圓C:相交,截得的弦長為.
(1)求圓C的方程;
(2)過原點O作圓C的兩條切線,與函數(shù)的圖象相交于M、N兩點(異于原點),證明:直線與圓C相切;
(3)若函數(shù)圖象上任意三個不同的點P、Q、R,且滿足直線和都與圓C相切,判斷線與圓C的位置關系,并加以證明.
【答案】(1)(2)證明見解析;(3)直線與圓C相切;證明見解析;
【解析】
(1)化圓方程為標準方程,得圓心坐標和半徑,求出圓心到直線的距離,用表示出弦長,從而求得,得圓方程;
(2)求出過原點的圓的兩條切線方程,然后求得兩條切線與拋物線的交點坐標后可得證;
(3)設,,,由此寫出直線的方程,由直線與圓相切得出的關系,可得;,然后可證直線也與圓相切.
(1)解:圓C:,可化為圓,
圓心到直線的距離,
∵截得的弦長為,
∴,
∴,
∴圓C的方程為;
(2)證明:設過原點O的切線方程為,即,
圓心到直線的距離,∴,
∴設過原點O的切線方程為,
與函數(shù),聯(lián)立可得,∴與圓C相切;
(3)解:設,,,可得,
直線的方程為,即為,
同理可得,直線的方程為,
直線的方程為,
∵直線和都與圓C相切,
∴,,即為,
,即有b,c為方程的兩根,
可得;,
由圓心到直線的距離為,
則直線與圓C相切.
科目:高中數(shù)學 來源: 題型:
【題目】閱讀如圖所示的程序框圖,解答下列問題:
(1)求輸入的的值分別為時,輸出的的值;
(2)根據(jù)程序框圖,寫出函數(shù)()的解析式;并求當關于的方程有三個互不相等的實數(shù)解時,實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若, 都是從0,1,2,3,4五個數(shù)中任取的一個數(shù),求上述函數(shù)有零點的概率;
(2)若, 都是從區(qū)間上任取的一個數(shù),求成立的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,是的直徑,PA垂直于所在的平面,C是圓周上不同于A,B的一動點.
(1)證明:是直角三角形;
(2)若,且當直線與平面所成角的正切值為時,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司想了解對某產(chǎn)品投入的宣傳費用與該產(chǎn)品的營業(yè)額的影響.下面是以往公司對該產(chǎn)品的宣傳費用 (單位:萬元)和產(chǎn)品營業(yè)額 (單位:萬元)的統(tǒng)計折線圖.
(Ⅰ)根據(jù)折線圖可以判斷,可用線性回歸模型擬合宣傳費用與產(chǎn)品營業(yè)額的關系,請用相關系數(shù)加以說明;
(Ⅱ)建立產(chǎn)品營業(yè)額關于宣傳費用的歸方程;
(Ⅲ)若某段時間內(nèi)產(chǎn)品利潤與宣傳費和營業(yè)額的關系為,應投入宣傳費多少萬元才能使利潤最大,并求最大利潤.
參考數(shù)據(jù): , , , ,
參考公式:相關系數(shù), ,
回歸方程中斜率和截距的最小二乘佔計公式分別為, .(計算結果保留兩位小數(shù))
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,某市為了制定合理的節(jié)水方案,對居民用水情況進行調(diào)查,通過抽樣,獲得某年100為居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖的的值;
(2)設該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),說明理由.
(3)估計居民月用水量的中位數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,,圓上的動點T滿足:線段TQ的垂直平分線與線段TP相交于點K.
Ⅰ求點K的軌跡C的方程;
Ⅱ經(jīng)過點的斜率之積為的兩條直線,分別與曲線C相交于M,N兩點,試判斷直線MN是否經(jīng)過定點若是,則求出定點坐標;若否,則說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,中心在原點的橢圓C的上焦點為,離心率等于.
求橢圓C的方程;
設過且不垂直于坐標軸的動直線l交橢圓C于A、B兩點,問:線段OF上是否存在一點D,使得以DA、DB為鄰邊的平行四邊形為菱形?作出判斷并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com