【題目】已知函數(shù),過點作與軸平行的直線交函數(shù)的圖像于點,過點圖像的切線交軸于點,則面積的最小值為____

【答案】

【解析】

求出fx)的導(dǎo)數(shù),令xa,求得P的坐標(biāo),可得切線的斜率,運用點斜式方程可得切線的方程,令y=0,可得B的坐標(biāo),再由三角形的面積公式可得△ABP面積S,求出導(dǎo)數(shù),利用導(dǎo)數(shù)求最值,即可得到所求值.

函數(shù)fx)=的導(dǎo)數(shù)為f′(x

由題意可令xa,解得y

可得Pa,),

即有切線的斜率為k

切線的方程為yx),

令y=0,可得x=a﹣1,

B a﹣1,0),

在直角三角形PAB中,|AB|=1,|AP|,

則△ABP面積為Sa|AB||AP|,a>0,

導(dǎo)數(shù)S′(a,

當(dāng)a>1時,S′>0,Sa)遞增;當(dāng)0<a<1時,S′<0,Sa)遞減.

即有a=1處S取得極小值,且為最小值e

故答案為:e

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線和圓,是直線上一點,過點作圓的兩條切線,切點分別為.

1)若,求點坐標(biāo);

2)若圓上存在點,使得,求點的橫坐標(biāo)的取值范圍;

3)設(shè)線段的中點為,軸的交點為,求線段長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某銷售公司擬招聘一名產(chǎn)品推銷員,有如下兩種工資方案:

方案一:每月底薪2000元,每銷售一件產(chǎn)品提成15元;

方案二:每月底薪3500元,月銷售量不超過300件,沒有提成,超過300件的部分每件提成30元.

(1)分別寫出兩種方案中推銷員的月工資(單位:元)與月銷售產(chǎn)品件數(shù)的函數(shù)關(guān)系式;

(2)從該銷售公司隨機選取一名推銷員,對他(或她)過去兩年的銷售情況進(jìn)行統(tǒng)計,得到如下統(tǒng)計表:

月銷售產(chǎn)品件數(shù)

300

400

500

600

700

次數(shù)

2

4

9

5

4

把頻率視為概率,分別求兩種方案推銷員的月工資超過11090元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),下列結(jié)論中正確的是( )

A.函數(shù)時,取得極小值

B.對于,恒成立

C.,則

D.,對于恒成立,則的最大值為,的最小值為1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),),以坐標(biāo)原點為極點,以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)已知直線與曲線交于兩點,且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】判斷下列函數(shù)的奇偶性:

1fx)=x3x

2;

3

4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C1y=cos x,C2y=sin (2x+),則下面結(jié)論正確的是( )

A. C1上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線C2

B. C1上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線C2

C. C1上各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線C2

D. C1上各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線C2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)一種產(chǎn)品,每年投入固定成本0.5萬元,此外每生產(chǎn)100件這種產(chǎn)品還需要增加投資0.25萬元,經(jīng)預(yù)測可知,市場對這種產(chǎn)品的年需求量為500件,當(dāng)出售的這種產(chǎn)品的數(shù)量為t(單位:百件)時,銷售所得的收入約為(萬元)

1)若該公司的年產(chǎn)量為x(單位:百件),試把該公司生產(chǎn)并銷售這種產(chǎn)品所得的年利潤表示為年產(chǎn)量x的函數(shù);

2)當(dāng)這種產(chǎn)品的年產(chǎn)量為多少時,當(dāng)年所得利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),那么下列結(jié)論中錯誤的是( )

A. 的極小值點,則在區(qū)間上單調(diào)遞減

B. ,使

C. 函數(shù)的圖像可以是中心對稱圖形

D. 的極值點,則

查看答案和解析>>

同步練習(xí)冊答案