16.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.已知sinA-sinB=$\frac{1}{3}$sinC,3b=2a,2≤a2+ac≤18,設(shè)△ABC的面積為S,p=$\sqrt{2}$a-S,則p的最大值是$\frac{9\sqrt{2}}{8}$.

分析 根據(jù)題意,利用正弦定理求得a、b、c的關(guān)系,以及a的取值范圍,再利用余弦定理求得cosB、sinB 的值,從而求得△ABC的面積S,寫(xiě)出p的解析式,利用二次函數(shù)的性質(zhì)即可求得p的最大值.

解答 解:△ABC中,由sinA-sinB=$\frac{1}{3}$sinC,
利用正弦定理得c=3a-3b,
再根據(jù)3b=2a,2≤a2+ac≤18,
可得c=a,b=$\frac{2a}{3}$,1≤a≤3.
由余弦定理得 b2=$\frac{4{a}^{2}}{9}$=a2+a2-2a•a•cosB,
求得cosB=$\frac{7}{9}$,
∴sinB=$\frac{4\sqrt{2}}{9}$,
∴△ABC的面積為S=$\frac{1}{2}$•ac•sinB=$\frac{1}{2}$a2•$\frac{4\sqrt{2}}{9}$=$\frac{2\sqrt{2}}{9}$•a2
故p=$\sqrt{2}$a-S=$\sqrt{2}$a-$\frac{2\sqrt{2}}{9}$a2=$\frac{9\sqrt{2}}{8}$-$\frac{2\sqrt{2}}{9}$(a-$\frac{9}{4}$)2,
利用二次函數(shù)的性質(zhì)結(jié)合a的范圍1≤a≤3,可得:
當(dāng)a=$\frac{9}{4}$時(shí),p取得最大值是$\frac{9\sqrt{2}}{8}$.
故答案為:$\frac{9\sqrt{2}}{8}$.

點(diǎn)評(píng) 本題主要考查了正弦定理和余弦定理的應(yīng)用問(wèn)題,也考查了二次函數(shù)的最值問(wèn)題,是綜合性題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知等差數(shù)列{an}滿足(a1+a2)+(a2+a3)+…+(an+an+1)=2n(n+1)(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{$\frac{{a}_{n}}{{2}^{n-1}}$}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.?dāng)?shù)列|{an}滿足a1=8,且${a_{n+1}}-{a_n}={2^{n+1}}$(n∈N*),則數(shù)列|{an}的前n項(xiàng)和為2n+2+4n-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知圓心在x軸上、半徑為$\sqrt{3}$的圓O位于y軸左側(cè),且與直線x+y=0相切,則圓O的標(biāo)準(zhǔn)方程是(x+$\sqrt{6}$)2+y2=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知數(shù)列{an}中,a1=1,a2=3,an+2+an=an+1,則a2014=( 。
A.-3B.-1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左、右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)F1的直線l交橢圓與兩點(diǎn)A,B,則|AF2|+|BF2|的最大值為( 。
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.正項(xiàng)等比數(shù)列{an}中,a6=a5+2a4,若存在兩項(xiàng)am,an使得$\sqrt{{a_m}{a_n}}$=4a1,則$\frac{1}{m}$+$\frac{2}{n}$的最小值是(  )
A.$\frac{{3+2\sqrt{2}}}{6}$B.1C.$\frac{11}{5}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知正三棱柱ABC-A′B′C′如圖所示,其中G是BC的中點(diǎn),D,E分別在線段AG,A′C上運(yùn)動(dòng),使得DE∥平面BCC′B′,CC′=2BC=4.
(1)求二面角A′-B′C-C′的余弦值;
(2)求線段DE的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)實(shí)數(shù)x,y滿足x2=4y,則$\sqrt{{{({x-3})}^2}+{{({y-1})}^2}}+y$的最小值是2.

查看答案和解析>>

同步練習(xí)冊(cè)答案