A. | 2kπ≤x≤2kπ+$\frac{π}{2}$,k∈Z | B. | 2kπ+$\frac{π}{2}$<x<2kπ+$\frac{3π}{2}$,k∈Z | ||
C. | 2kπ+$\frac{3π}{2}$<x<2kπ+2π,k∈Z | D. | 2kπ+π<x<2kπ+$\frac{3π}{2}$,k∈Z |
分析 利用同角三角函數(shù)間的基本關(guān)系得到sin2x+cos2x=1,整理得到關(guān)系式,已知等式利用二次根式性質(zhì)及絕對(duì)值的代數(shù)意義化簡(jiǎn),確定出cosx小于0,利用余弦函數(shù)性質(zhì)即可確定出x的范圍.
解答 解:∵sin2x+cos2x=1,即cos2x=1-sin2x=(1+sinx)(1-sinx),
∴$\sqrt{\frac{1-sinx}{1+sinx}}$=$\frac{sinx-1}{cosx}$,
∵$\sqrt{\frac{1-sinx}{1+sinx}}$=$\sqrt{\frac{(1-sinx)^{2}}{(1+sinx)(1-sinx)}}$=$\frac{1-sinx}{\left|cosx\right|}$=$\frac{sinx-1}{cosx}$,
∴cosx<0,
∴x的范圍為$\frac{π}{2}$+2kπ<x<$\frac{3π}{2}$+2kπ(k∈Z).
故選:B.
點(diǎn)評(píng) 本題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,以及余弦函數(shù)的性質(zhì),熟練掌握基本關(guān)系是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $y=\frac{3-2x}{x-1}$ | B. | $y=\frac{2x-1}{x-1}$ | C. | $y=-\frac{2x+1}{x+1}$ | D. | $y=\frac{2x+3}{x+1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 6 | C. | 9 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a=4,b=3 | B. | a=-4,b=3 | C. | a=±4,b=3 | D. | a=4,b=±3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com