已知圓C:x2+y2-6x-8y=0,若過圓內(nèi)一點(diǎn)(3,5)的最長弦為AC,最短弦為BD;則四邊形ABCD的面積為( )
A.20
B.15
C.10
D.
【答案】分析:將圓C方程化為標(biāo)準(zhǔn)方程,找出圓心C坐標(biāo)與半徑r,過點(diǎn)(3,5)最長的弦即為過此點(diǎn)的直徑,最短的弦即為與此直徑垂直的弦,利用垂徑定理及勾股定理求出|BD|的長,利用對角線垂直的四邊形面積等于對角線乘積的一半即可求出四邊形ABCD的面積.
解答:解:將圓C方程化為標(biāo)準(zhǔn)方程得:(x-3)2+(y-4)2=25,
∴圓心C(3,4),半徑r=5,
∴過圓內(nèi)一點(diǎn)(3,5)的最長弦為|AC|=10,且直線AC的斜率不存在,
∴直線BD的斜率為0,即直線BD解析式為y=5,
∴圓心C到直線BD的距離d=1,
∴最短弦為|BD|=2=4,
則四邊形ABCD的面積S=|AC|•|BD|=20
故選A
點(diǎn)評:此題考查了直線與圓的相交的性質(zhì),涉及的知識有:圓的標(biāo)準(zhǔn)方程,垂徑定理,勾股定理,以及四邊形的面積,找出最長的弦與最短的弦長是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2-6x-4y+8=0.以圓C與坐標(biāo)軸的交點(diǎn)分別作為雙曲線的一個(gè)焦點(diǎn)和頂點(diǎn),則適合上述條件雙曲線的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)一個(gè)圓與x軸相切,圓心在直線3x-y=0上,且被直線x-y=0所截得的弦長為2
7
,求此圓方程.
(2)已知圓C:x2+y2=9,直線l:x-2y=0,求與圓C相切,且與直線l垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•普陀區(qū)一模)如圖,已知圓C:x2+y2=r2與x軸負(fù)半軸的交點(diǎn)為A.由點(diǎn)A出發(fā)的射線l的斜率為k,且k為有理數(shù).射線l與圓C相交于另一點(diǎn)B.
(1)當(dāng)r=1時(shí),試用k表示點(diǎn)B的坐標(biāo);
(2)當(dāng)r=1時(shí),試證明:點(diǎn)B一定是單位圓C上的有理點(diǎn);(說明:坐標(biāo)平面上,橫、縱坐標(biāo)都為有理數(shù)的點(diǎn)為有理點(diǎn).我們知道,一個(gè)有理數(shù)可以表示為
qp
,其中p、q均為整數(shù)且p、q互質(zhì))
(3)定義:實(shí)半軸長a、虛半軸長b和半焦距c都是正整數(shù)的雙曲線為“整勾股雙曲線”.
當(dāng)0<k<1時(shí),是否能構(gòu)造“整勾股雙曲線”,它的實(shí)半軸長、虛半軸長和半焦距的長恰可由點(diǎn)B的橫坐標(biāo)、縱坐標(biāo)和半徑r的數(shù)值構(gòu)成?若能,請嘗試探索其構(gòu)造方法;若不能,試簡述你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•瀘州一模)已知圓C:x2+y2=r2(r>0)與拋物線y2=40x的準(zhǔn)線相切,若直線l:
x
a
y
b
=1
與圓C有公共點(diǎn),且公共點(diǎn)都為整點(diǎn)(整點(diǎn)是指橫坐標(biāo).縱坐標(biāo)都是整數(shù)的點(diǎn)),那么直線l共有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2=4與直線L:x+y+a=0相切,則a=( 。

查看答案和解析>>

同步練習(xí)冊答案