(本小題滿分14分)如圖,已知直線OP1,OP2為雙曲線E:的漸近線,△P1OP2的面積為,在雙曲線E上存在點P為線段P1P2的一個三等分點,且雙曲線E的離心率為.
(1)若P1、P2點的橫坐標(biāo)分別為x1、x2,則x1、x2之間滿足怎樣的關(guān)系?并證明你的結(jié)論;
(2)求雙曲線E的方程;
(3)設(shè)雙曲線E上的動點,兩焦點,若為鈍角,求點橫坐標(biāo)的取值范圍.
(1)∴x1·x2=;(2)-=1;(3)-,-2)∪(2,)
【解析】
試題分析:(1)設(shè)雙曲線方程為-=1,由已知得=
∴= ∴漸近線方程為y=±x …………2分
則P1(x1,x1) P2(x2,-x2)
設(shè)漸近線y=x的傾斜角為θ,則tanθ= ∴sin2θ==
∴=|OP1||OP2|sin2θ=·
∴x1·x2= …………5分
(2)不妨設(shè)P分所成的比為λ=2,P(x,y), 則
x= y==
∴x1+2x2=3x x1-2x2=2y …………7分
∴(3x)2-(2y)2=8x1x2=36
∴-=1 即為雙曲線E的方程 …………9分
(3)由(2)知C=,∴F1(-,0) F2(,0) 設(shè)M(x0,y0)
則y=x-9,=(--x0,-y0) =(-x0,-y0)
∴·=x-13+y=x-22 …………12分
若∠F1MF2為鈍角,則x-22<0
∴|x0|< 又|x0|>2
∴x0的范圍為(-,-2)∪(2,) ……14分
考點:本題考查了雙曲線的方程、性質(zhì)及數(shù)量積的運用
點評:本題主要考查雙曲線的標(biāo)準(zhǔn)方程和性質(zhì)、數(shù)量積的應(yīng)用等基礎(chǔ)知識,考查曲線和方程的關(guān)系等解析幾何的基本思想方法
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個焦點,當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進(jìn)行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com