把函數(shù)y=sinx的圖象按向量
k
=(a,b)平移后得到函數(shù)y=sin(x-
π
3
)+1的圖象,則向量
k
=(a,b)為( 。
A、(
π
3
,1)
B、(-
π
3
,1)
C、(
π
3
,-1)
D、(-
π
3
,-1)
考點:函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:由條件根據(jù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.
解答: 解:∵把函數(shù)y=sinx的圖象向右平移
π
3
個單位,再向上平移一個單位,得到函數(shù)y=sin(x-
π
3
)+1的圖象,
故向量
k
=(
π
3
,1),
故選:A.
點評:本題主要考查y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)有f(x)=sinxcosx+
3
2
(cos2x-sin2x).
(1)求f(
π
6
)及f(x)的單調(diào)遞增區(qū)間;
(2)求f(x)在閉區(qū)間[-
π
4
,
π
4
]的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示,則這個幾何體的體積等于(  )
A、
1
6
a3
B、
1
2
a3
C、
2
3
a3
D、
5
6
a3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x+
4
x
的極值情況是( 。
A、既無極小值,也無極大值
B、當(dāng)x=-2時,極大值為-4,無極小值
C、當(dāng)x=2,極小值為4,無極大值
D、當(dāng)x=-2時,極大值為-4,當(dāng)x=2時極小值為4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在[-1,0)∪(0,1]的奇函數(shù)f(x),在(0,1]的圖象如圖,f(x)-f(-x)>-1的解集是( 。
A、(-1,-
1
2
)∪(0,1]
B、[-1,
1
2
)
C、(-
1
2
,1)
D、(-
1
2
,0)∪(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f1(x)=ax,f2(x)=xa,f3(x)=logax(其中a>0且a≠1),在同一坐標(biāo)系中畫出其中兩個函數(shù)在x≥0且y≥0的范圍內(nèi)的大致圖象,其中正確的是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知指數(shù)函數(shù)y=g(x)滿足:g(3)=8,定義域為R的函數(shù)f(x)=
n-g(x)
m+2g(x)
是奇函數(shù).
(1)確定y=g(x)的解析式;
(2)求m、n的值;
(3)判斷f(x) 的單調(diào)性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c.若(a+b)(a-b)=c(b+c),則A=( 。
A、30°B、60°
C、120°D、150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x∈[1,+∞)時,函數(shù)f(x)=x+
4
x
的最小值是
 

查看答案和解析>>

同步練習(xí)冊答案