【題目】如圖,已知平面ABC,,,,,,點(diǎn)E和F分別為BC和的中點(diǎn).
(1)求證:平面;
(2)求證:直線平面;
(3)求直線與平面所成角的大。
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3).
【解析】
(1)連接,由題意易知,再由線面平行的判定定理可得出結(jié)論;(2)結(jié)合題中條件利用線面垂直的判定定理直接判斷即可證明結(jié)論;(3)分別取的中點(diǎn)M,N,連接,,利用題中相關(guān)已知條件即可證明,利用(2)的結(jié)論可得面,則可得就是直線與平面所成的角,再結(jié)合題中數(shù)量關(guān)系可求得=4,,則在中可得,則可得.
(1)證明:
如圖,連接,
在中,因?yàn)?/span>E和F分別是BC和的中點(diǎn),所以.
又因?yàn)?/span>EF平面,平面,所以平面.
(2)證明:
因?yàn)?/span>,E為BC的中點(diǎn),所以.因?yàn)?/span>平面ABC,,所以平面ABC,又平面ABC,從而.又因?yàn)?/span>,
所以平面.
(3)解:取的中點(diǎn)M和的中點(diǎn)N,連接,,NE.因?yàn)?/span>N和E分別為和BC的中點(diǎn),所以,,故且,所以,且.又因?yàn)?/span>平面,所以平面,
從而為直線與平面所成的角.
在中,可得,所以.
因?yàn)?/span>,,
所以四邊形為平行四邊形,
所以,,
又由,得.
在中,
可得.
在中,
因此.
所以直線與平面所成的角為30°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)的最小值為-1,,數(shù)列滿足,,記,表示不超過(guò)的最大整數(shù).證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,,,,,,平面,.
()求二面角的正弦值.
()設(shè)點(diǎn)為線段上一點(diǎn),且直線與平面所成角的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四面體ABCD中,△ABC是等邊三角形,平面ABC⊥平面ABD,點(diǎn)M為棱AB的中點(diǎn),AB=2,AD=,∠BAD=90°.
(Ⅰ)求證:AD⊥BC;
(Ⅱ)求異面直線BC與MD所成角的余弦值;
(Ⅲ)求直線CD與平面ABD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線,焦點(diǎn)為,過(guò)點(diǎn)的直線交拋物線于,兩點(diǎn),則的最小值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,平面.
(1)證明:平面;
(2)過(guò)點(diǎn)作一平行于平面的截面,畫(huà)出該截面,說(shuō)明理由,并求夾在該截面與平面之間的幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)=lnx+ax2+(2a+1)x.
(1)討論的單調(diào)性;
(2)當(dāng)a﹤0時(shí),證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了調(diào)查某生產(chǎn)線上質(zhì)量監(jiān)督員甲是否在現(xiàn)場(chǎng)對(duì)產(chǎn)品質(zhì)量好壞有無(wú)影響,現(xiàn)統(tǒng)計(jì)數(shù)據(jù)如下:質(zhì)量監(jiān)督員甲在現(xiàn)場(chǎng)時(shí),1 000件產(chǎn)品中合格品有990件,次品有10件,甲不在現(xiàn)場(chǎng)時(shí),500件產(chǎn)品中有合格品490件,次品有10件.
(1)補(bǔ)充下面列聯(lián)表,并初步判斷甲在不在現(xiàn)場(chǎng)與產(chǎn)品質(zhì)量是否有關(guān):
合格品數(shù)/件 | 次品數(shù)/件 | 總數(shù)/件 | |
甲在現(xiàn)場(chǎng) | 990 | ||
甲不在現(xiàn)場(chǎng) | 10 | ||
總數(shù)/件 |
(2)用獨(dú)立性檢驗(yàn)的方法判斷能否在犯錯(cuò)誤的概率不超過(guò)0.15的前提下認(rèn)為“甲在不在現(xiàn)場(chǎng)與產(chǎn)品質(zhì)量有關(guān)”?
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知偶函數(shù)在區(qū)間上單調(diào)遞增,且滿,給出下列判斷:
①;②在上是減函數(shù);③的圖象關(guān)于直線對(duì)稱(chēng);
④函數(shù)在處取得最大值;⑤函數(shù)沒(méi)有最小值
其中判斷正確的序號(hào)_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com