設(shè)向量a=(2,sin θ),b=(1,cos θ),θ為銳角.
(1)若a·b=,求sin θ+cos θ的值;
(2)若a∥b,求sin的值.
解 (1)因?yàn)?i>a·b=2+sin θcos θ=,
所以sin θcos θ=.(2分)
所以(sin θ+cos θ)2=1+2sin θcos θ=.
又因?yàn)?i>θ為銳角,所以sin θ+cos θ=.(5分)
(2)法一 因?yàn)?i>a∥b,所以tan θ=2.(7分)
所以sin 2θ=2sin θcos θ==,
cos 2θ=cos2θ-sin2θ==-.(11分)
法二 因?yàn)?i>a∥b,所以tan θ=2.(7分)
所以sin θ=,cos θ=.
因此sin 2θ=2sin θcos θ=,
cos 2θ=cos2θ-sin2θ=-.(11分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
拋物線y2= 4x上一點(diǎn)P到焦點(diǎn)F的距離是10, 則P點(diǎn)的坐標(biāo)是( )
A.(9, 6) B.(6, 9) C.(±6, 9) D.(9,±6)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且acos B=ccos B+bcos C.
(1)求角B的大;
(2)設(shè)向量m=(cos A,cos 2A),n=(12,-5),求當(dāng)m·n取最大值時(shí),tan C的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在四棱錐P ABCD中,PA⊥底面ABCD,AC⊥CD,∠DAC=60°,AB=BC=AC,E是PD的中點(diǎn),F為ED的中點(diǎn).
(1)求證:平面PAC⊥平面PCD;
(2)求證:CF∥平面BAE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列{an}的前三項(xiàng)分別為a1=5,a2=6,a3=8,且數(shù)列{an}的前n項(xiàng)和Sn滿足Sn+m=(S2n+S2m)-(n-m)2,其中m,n為任意正整數(shù).
(1)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn;
(2)求滿足S-an+33=k2的所有正整數(shù)k,n.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若(a-4i)i=b-i,(a,b∈R,i為虛數(shù)單位),則復(fù)數(shù)z=a+bi在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)位于( )
A.第一象限 B. 第二象限 C.第三象限 D.第四象限
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}滿足a3 =8,a5 +a7=160,{an}的前n項(xiàng)和為Sn.
(I)求an;
(II)若數(shù)列{bn}的通項(xiàng)公式為bn=(-1)n·n(n∈N+),求數(shù)列{an·bn}的前n項(xiàng)和Tn。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com