已知在f(x)=(x+1)n的展開式中,只有第6項的二項式系數(shù)最大.
(1)求n;
(2)求f(96)被10除所得的余數(shù).
分析:(1)利用二項式系數(shù)的性質(zhì)可知第6項為展開式的中間項,從而可知n的值;
(2)由于f(96)=(96+1)10=(100-3)10,利用二項式定理可知,f(96)被10除得的余數(shù)與310除得的余數(shù)相同,從而可求答案.
解答:解:(1)∵f(x)=(x+1)n的展開式中,只有第6項的二項式系數(shù)最大,
n
2
+1=6,
∴n=10…(4分)
(2)∵f(96)=(96+1)10=9710=(100-3)10
=
C
0
10
×10010-
C
1
10
×1009×3+
C
2
10
×1008×32-…-
C
9
10
×100×39+
C
10
10
•310
∴f(96)被10除得的余數(shù)與310除得的余數(shù)相同…(10分)
又310=95=(10-1)5=
C
0
5
×105-
C
1
5
×104+
C
2
5
×103-
C
3
5
×102+
C
4
5
×101-
C
5
5

∴310被10除得的余數(shù)為9,
∴f(96)被10除得的余數(shù)為9…(14分)
點評:本題考查二項式定理的應用,考查二項式系數(shù)的性質(zhì),突出考查整除問題,得到f(96)被10除得的余數(shù)與310除得的余數(shù)相同是關鍵,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設g(x)=2x+
1
x
,x∈[
1
4
,4].
(1)求g(x)的單調(diào)區(qū)間;(簡單說明理由,不必嚴格證明)
(2)證明g(x)的最小值為g(
2
2
);
(3)設已知函數(shù)f(x)(x∈[a,b]),定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b].其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值.例如:f(x)=sinx,x∈[-
π
2
π
2
],則f1(x)=-1,x∈[-
π
2
,
π
2
],f2(x)=sinx,x∈[-
π
2
,
π
2
],設φ(x)=
g(x)+g(2x)
2
+
|g(x)-g(2x)|
2
,不等式p≤φ1(x)-φ2(x)≤m恒成立,求p、m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π2
)的圖象與y軸的交點為(0,1),它在y軸右側(cè)的第一個最高點和第一個最低點的坐標分別為(x0,2)和(x0+2π,-2).
(1)求f(x)的解析式及x0的值;
(2)求f(x)的增區(qū)間;
(3)若x∈[-π,π],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x2-(k2+k+1)x+15,g(x)=k2x-k,其中k∈R.
(1)設p(x)=f(x)+g(x),若p(x)在(1,4)上有零點,求實數(shù)k的取值范圍;
(2)設函數(shù)q(x)=
g(x)x≥0
f(x)x<0
是否存在實數(shù)k,對任意給定的非零實數(shù)x1,存在唯一的非零實數(shù)x2(x2≠x1),使得q(x2)=q(x1)?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•成都一模)已知函數(shù)f(x)在[a,b]上連續(xù),定義
f1(x)=f(t)min,x∈[a,b],a≤t≤x
f2(x)=f(t)max,x∈[a,b],a≤t≤x
;其中f(x)min(x∈D)表示f(x)在D上的最小值,f(x)max(x∈D)表示f(x)在D上的最大值.若存在最小正整數(shù)k使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.有下列命題:
①若f(x)=cosx,x∈[0,π],則f1(x)=1,x∈[0,π];
②若f(x)=2x,x∈[-1,4],則f2(x)=2x,x∈[-1,4]
③f(x)=x為[1,2]上的1階收縮函數(shù);
④f(x)=x2為[1,4]上的5階收縮函數(shù).
其中你認為正確的所有命題的序號為
②③④
②③④

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年安徽省安慶市望江中學高三(上)第一次月考數(shù)學試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=ax2+bx+1(a,b為實數(shù)),x∈R,
(1)若不等式f(x)>4的解集為{x|x<-3或x>1},求F(x)的表達式;
(2)在(1)的條件下,當x∈[-1,1]時,g(x)=f(x)-kx是單調(diào)函數(shù),求實數(shù)k的取值范圍;
(3)設m•n<0,m+n>0,a>0且f(x)為偶函數(shù),判斷F(m)+F(n)能否大于零?

查看答案和解析>>

同步練習冊答案