【題目】為研究男、女生的身高差異,現(xiàn)隨機(jī)從高二某班選出男生、女生各10人,并測(cè)量他們的身高,測(cè)量結(jié)果如下(單位:厘米):
男:164 178 174 185 170 158 163 165 161 170
女:165 168 156 170 163 162 158 153 169 172
(1)根據(jù)測(cè)量結(jié)果完成身高的莖葉圖(單位:厘米),并分別求出男、女生身高的平均值.
(2)請(qǐng)根據(jù)測(cè)量結(jié)果得到20名學(xué)生身高的中位數(shù)(單位:厘米),將男、女生身高不低于和低于的人數(shù)填入下表中,并判斷是否有的把握認(rèn)為男、女生身高有差異?
人數(shù) | 男生 | 女生 |
身高 | ||
身高 |
參照公式:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(3)若男生身高低于165厘米為偏矮,不低于165厘米且低于175厘米為正常,不低于175厘米為偏高.假設(shè)可以用測(cè)量結(jié)果的頻率代替概率,試求從高二的男生中任意選出2人,恰有1人身高屬于正常的概率.
【答案】(1)見(jiàn)解析(2)(3)0.48
【解析】
(1)根據(jù)題中數(shù)據(jù)完善莖葉圖即可,結(jié)合平均數(shù)的計(jì)算公式即可求出結(jié)果;
(2)根據(jù)題中數(shù)據(jù)完善列聯(lián)表,再由求出,結(jié)合臨界值表即可得出結(jié)論;
(3)先由題意確定身高屬于正常的男生概率,進(jìn)而可求出結(jié)果.
(1)莖葉圖為:
平均身高:男:168.8 女:163.6
(2)易知.
男、女生身高的列聯(lián)表為
人數(shù) | 男生 | 女生 |
身高 | 6 | 5 |
身高 | 4 | 5 |
.
所以沒(méi)有把握認(rèn)為男、女生身高有差異.
(3)由測(cè)量結(jié)果可知,身高屬于正常的男生概率為0.4,
因此選2名男生,恰好一名身高正常的概率為.
所以,從高二的男生中任意選出2人,恰有1人身高屬于正常的概率為0.48
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)圓錐內(nèi)作一個(gè)內(nèi)接等邊圓柱(一個(gè)底面在圓錐的底面上,且軸截面是正方形的圓柱),再在等邊圓柱的上底面截得的小圓錐內(nèi)做一個(gè)內(nèi)接等邊圓柱,這樣無(wú)限的做下去.
(1)證明這些等邊圓柱的體積從大到小排成一個(gè)等比數(shù)列;
(2)已知這些等邊圓柱的體積之和為原來(lái)圓錐體積的,求最大的等邊圓柱的體積與圓錐的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F的直線與拋物線交于A,B兩點(diǎn),且3,拋物線的準(zhǔn)線l與x軸交與點(diǎn)C,AA1垂直l于點(diǎn)A1,若四邊形AA1CF的面積為,則準(zhǔn)線l的方程為( )
A.B.C.x=﹣2D.x=﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線,且與坐標(biāo)軸形成的三角形面積為.求:
(1)求證:不論為何實(shí)數(shù),直線過(guò)定點(diǎn)P;
(2)分別求和時(shí),所對(duì)應(yīng)的直線條數(shù);
(3)針對(duì)的不同取值,討論集合直線經(jīng)過(guò)P,且與坐標(biāo)軸圍成的三角形面積為中的元素個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的短軸長(zhǎng)為,離心率為。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的左,右焦點(diǎn)分別為,左,右頂點(diǎn)分別為,,點(diǎn),,為橢圓上位于軸上方的兩點(diǎn),且,記直線,的斜率分別為,,若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為研究男、女生的身高差異,現(xiàn)隨機(jī)從高二某班選出男生、女生各10人,并測(cè)量他們的身高,測(cè)量結(jié)果如下(單位:厘米):
男:164 178 174 185 170 158 163 165 161 170
女:165 168 156 170 163 162 158 153 169 172
(1)根據(jù)測(cè)量結(jié)果完成身高的莖葉圖(單位:厘米),并分別求出男、女生身高的平均值.
(2)請(qǐng)根據(jù)測(cè)量結(jié)果得到20名學(xué)生身高的中位數(shù)(單位:厘米),將男、女生身高不低于和低于的人數(shù)填入下表中,并判斷是否有的把握認(rèn)為男、女生身高有差異?
人數(shù) | 男生 | 女生 |
身高 | ||
身高 |
參照公式:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | .024 | 6.635 | 7.879 | 10.828 |
(3)若男生身高低于165厘米為偏矮,不低于165厘米且低于175厘米為正常,不低于175厘米為偏高.假設(shè)可以用測(cè)量結(jié)果的頻率代替概率,試求從高二的男生中任意選出2人,恰有1人身高屬于正常的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司推出一新款手機(jī),因其功能強(qiáng)大,外觀新潮,一上市便受到消費(fèi)者爭(zhēng)相搶購(gòu),銷(xiāo)量呈上升趨勢(shì).散點(diǎn)圖是該款手機(jī)上市后前6周的銷(xiāo)售數(shù)據(jù).
(1)根據(jù)散點(diǎn)圖,用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測(cè)該款手機(jī)第8周的銷(xiāo)量;
(2)為了分析市場(chǎng)趨勢(shì),該公司市場(chǎng)部從前6周的銷(xiāo)售數(shù)據(jù)中隨機(jī)抽取2周的數(shù)據(jù),記抽取的銷(xiāo)量在18萬(wàn)臺(tái)以上的周數(shù)為,求的分布列和數(shù)學(xué)期望.參考公式:回歸直線方程,其中:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】右邊程序框圖的算法思路源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”. 執(zhí)行該程序框圖,若輸入的分別為16,20,則輸出的( )
A. 0B. 2C. 4D. 1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某單位甲、乙、丙三個(gè)部門(mén)的員工人數(shù)分別為24,16,16.現(xiàn)采用分層抽樣的方法從中抽取7人,進(jìn)行睡眠時(shí)間的調(diào)查.
(I)應(yīng)從甲、乙、丙三個(gè)部門(mén)的員工中分別抽取多少人?
(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,現(xiàn)從這7人中隨機(jī)抽取3人做進(jìn)一步的身體檢查.
(i)用X表示抽取的3人中睡眠不足的員工人數(shù),求隨機(jī)變量X的分布列與數(shù)學(xué)期望;
(ii)設(shè)A為事件“抽取的3人中,既有睡眠充足的員工,也有睡眠不足的員工”,求事件A發(fā)生的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com