分析 由AB=BD=AC=CD=AD=BC=1,M,N分別是BC和AD的中點(diǎn),得CM、CN,由能能求出MN.
解答 解:如圖,正四面體ABCD棱長(zhǎng)為1,M,N分別是BC和AD的中點(diǎn),
連結(jié)MN、BN、CN,
∵AB=BD=AC=CD=AD=1,N是AD中點(diǎn),
∴BN⊥AD,CN⊥AD,
∴BN=CN=$\sqrt{1-(\frac{1}{2})^{2}}$=$\frac{\sqrt{3}}{2}$,
∵BC=1,∴MN⊥BC,
∴MN=$\sqrt{(\frac{\sqrt{3}}{2})^{2}-(\frac{1}{2})^{2}}$=$\frac{\sqrt{2}}{2}$.
故答案為:$\frac{\sqrt{2}}{2}$.
點(diǎn)評(píng) 本題考查線段長(zhǎng)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{π}$ | B. | (3-2$\sqrt{2}$)π | C. | $\frac{1}{π}$ | D. | $\frac{1}{2π}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 只有一個(gè) | B. | 只有兩個(gè) | C. | 至多3個(gè) | D. | 有無數(shù)個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com