給出下列四個(gè)命題:
①設(shè)x1,x2∈R,則x1>1且x2>1的充要條件是x1+x2>2且x1x2>1;
②任意的銳角三角形ABC中,有sinA>cosB成立;
③平面上n個(gè)圓最多將平面分成2n2-4n+4個(gè)部分;
④空間中直角在一個(gè)平面上的正投影可以是鈍角.
其中真命題的序號(hào)是    (要求寫出所有真命題的序號(hào)).
【答案】分析:由實(shí)數(shù)的性質(zhì)及不等式的性質(zhì),我們易判斷①的對(duì)錯(cuò);根據(jù)誘導(dǎo)公式及正弦函數(shù)的單調(diào)性及銳角三角形的定義,我們可判斷②的真假;利用遞推法我們易求出平面上n個(gè)圓將平面分成的最多份數(shù),進(jìn)而得到③的正誤;利用正投影的定義,我們易判斷④的真假,進(jìn)而得到答案.
解答:解:若x1>1且x2>1,則x1+x2>2且x1x2>1成立,但x1+x2>2且x1x2>1時(shí),x1>1且x2>1不一定成立,故x1>1且x2>1的必要不充分條件是x1+x2>2且x1x2>1,故①錯(cuò)誤;
在銳角三角形中A+B>,∴A>-B,故sinA>sin(-B)=cosB,故②正確;
平面上n個(gè)圓最多將平面分成n2-n+2部分,故③錯(cuò)誤;
間中直角在一個(gè)平面上的正投影可以是銳角,也可能是直角,也可以是鈍角,故④正確;
故答案為:②④
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是平行投影、充要條件的判斷、正弦函數(shù)的單調(diào)性、數(shù)列的遞推公式,熟練掌握這些基本知識(shí)點(diǎn)是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

12、已知a、b是兩條不重合的直線,α、β、γ是三個(gè)兩兩不重合的平面,給出下列四個(gè)命題:
①若a⊥α,a⊥β,則α∥β;
②若α⊥γ,β⊥γ,則α∥β;
③若α∥β,a?α,b?β,則a∥b;
④若α∥β,α∩γ=a,β∩γ=b,則a∥b.
其中正確命題的序號(hào)有
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①函數(shù)y=
1
x
的單調(diào)減區(qū)間是(-∞,0)∪(0,+∞);
②函數(shù)y=x2-4x+6,當(dāng)x∈[1,4]時(shí),函數(shù)的值域?yàn)閇3,6];
③函數(shù)y=3(x-1)2的圖象可由y=3x2的圖象向右平移1個(gè)單位得到;
④若函數(shù)f(x)的定義域?yàn)閇0,2],則函數(shù)f(2x)的定義域?yàn)閇0,1];
⑤若A={s|s=x2+1},B={y|x=
y-1
}
,則A∩B=A.
其中正確命題的序號(hào)是
③④⑤
③④⑤
.(填上所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將邊長為2,銳角為60°的菱形ABCD沿較短對(duì)角線BD折成二面角A-BD-C,點(diǎn)E,F(xiàn)分別為AC,BD的中點(diǎn),給出下列四個(gè)命題:
①EF∥AB;②直線EF是異面直線AC與BD的公垂線;③當(dāng)二面角A-BD-C是直二面角時(shí),AC與BD間的距離為
6
2
;④AC垂直于截面BDE.
其中正確的是
②③④
②③④
(將正確命題的序號(hào)全填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題,其中正確的命題的個(gè)數(shù)為( 。
①命題“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
log2sin
π
12
+log2cos
π
12
=-2;
③函數(shù)y=tan
x
2
的對(duì)稱中心為(kπ,0),k∈Z;
④[cos(3-2x)]=-2sin(3-2x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;
②函數(shù)y=x3與y=3x的值域相同;
③函數(shù)y=
1
2
+
1
2x-1
y=
(1+2x)2
x•2x
都是奇函數(shù);
④函數(shù)y=(x-1)2與y=2x-1在區(qū)間[0,+∞)上都是增函數(shù),其中正確命題的序號(hào)是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案