分析 在四面體OABC中,運(yùn)用向量的多邊形法則,求出$\overrightarrow{MN}$,結(jié)合條件由$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$表示,并由空間向量基本定理,即可得到x,y,z,進(jìn)而得到所求和.
解答 解:在四面體OABC中,$\overrightarrow{MN}$=$\overrightarrow{MO}$+$\overrightarrow{OC}$+$\overrightarrow{CN}$,
點(diǎn)M在OA上,且OM=2MA,N為BC的中點(diǎn),
可得$\overrightarrow{OM}$=$\frac{2}{3}$$\overrightarrow{OA}$=$\frac{2}{3}$$\overrightarrow{a}$,$\overrightarrow{CN}$=$\frac{1}{2}$$\overrightarrow{CB}$=$\frac{1}{2}$($\overrightarrow{OB}$-$\overrightarrow{OC}$)=$\frac{1}{2}$($\overrightarrow$-$\overrightarrow{c}$),
則$\overrightarrow{MN}$=-$\frac{2}{3}$$\overrightarrow{a}$+$\overrightarrow{c}$+$\frac{1}{2}$($\overrightarrow$-$\overrightarrow{c}$)
=-$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$+$\frac{1}{2}$$\overrightarrow{c}$,
又$\overrightarrow{MN}$=x$\overrightarrow{a}$+y$\overrightarrow$+z$\overrightarrow{c}$,
可得x=-$\frac{2}{3}$,y=z=$\frac{1}{2}$,
則x+y+z=-$\frac{2}{3}$+$\frac{1}{2}$+$\frac{1}{2}$=$\frac{1}{3}$.
故答案為:$\frac{1}{3}$.
點(diǎn)評 本題考查空間向量和應(yīng)用,考查多邊形法則,以及空間向量基本定理的運(yùn)用,考查運(yùn)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 4 | C. | 2$\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x-2y+1=0 | B. | x+2y+1=0 | C. | x-2y-1=0 | D. | x+2y-1=0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com