14.已知定義在(0,$\frac{π}{2}}$)上的函數(shù)f(x),f'(x)為其導(dǎo)數(shù),且f'(x)•sinx-cosx•f(x)>0恒成立,則( 。
A.$\sqrt{3}$f($\frac{π}{4}$)>$\sqrt{2}$f($\frac{π}{3}$)B.$\sqrt{2}$f($\frac{π}{6}$)>f($\frac{π}{4}$)C.f(1)<2f($\frac{π}{6}$)sin1D.$\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$)

分析 構(gòu)造函數(shù)g(x)=$\frac{f(x)}{sinx}$,求出g(x)的導(dǎo)數(shù),得到函數(shù)g(x)的單調(diào)性,從而判斷出函數(shù)值的大小即可.

解答 解:由f′(x)sinx-f(x)cosx>0,
構(gòu)造函數(shù)g(x)=$\frac{f(x)}{sinx}$,
則g′(x)=$\frac{f′(x)sinx-f(x)cosx}{si{n}^{2}x}$,
當(dāng)x∈(0,$\frac{π}{2}$)時,g′(x)>0,
即函數(shù)g(x)在(0,$\frac{π}{2}$)上單調(diào)遞增,
∴g($\frac{π}{6}$)<g($\frac{π}{3}$),
∴$\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$),
故選:D.

點評 本題考查了導(dǎo)數(shù)的應(yīng)用,考查函數(shù)的單調(diào)性問題,構(gòu)造函數(shù)是解題的關(guān)鍵,本題是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下例說法正確的是( 。
A.在研究身高和體重的相關(guān)性中,R2=0.64,表明身高解釋了$\begin{array}{l}64%\end{array}$的體重變化
B.若a,b,c∈R,有(ab)•c=a•(bc),類比此結(jié)論,若向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,有($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$),
C.在吸煙與患肺癌是否相關(guān)的判斷中,由獨立性檢驗可知,在犯錯誤的概率不超過0.01的前提下,認(rèn)為吸煙與患肺癌有關(guān)系,那么在100個吸煙的人中,必有99個人患肺癌
D.若a,b∈R,則a-b>0⇒a>b,類比推出若a,b∈C,則a-b>0⇒a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知a,b為正實數(shù),且a+b=1,則$\frac{1}{a}$+$\frac{1}$的最小值為4此時a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知橢圓E:$\frac{x^2}{4}+\frac{y^2}{2}$=1,直線l交橢圓于A,B兩點,若AB的中點坐標(biāo)為(1,-$\frac{1}{2}$),則l的方程為x-2y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某學(xué)校餐廳每天供應(yīng)500名學(xué)生用餐,每星期一有A,B兩種菜可供選擇.調(diào)查資料表明,凡是在星期一選A種菜的學(xué)生,下星期一會有20%改選B種菜;而選B種菜的學(xué)生,下星期一會有30%改選A種菜,用an,bn分別表示在第n個星期的星期一選A種菜和選B種菜的學(xué)生人數(shù),若a1=300,則:
(1)求a2的值;
(2)判斷數(shù)列{an-300}是否常數(shù)數(shù)列,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知兩條平行直線l1:3x+4y+2=0,l2:6x+by+c=0間的距離為2,則b+c=(  )
A.12或-48B.32或-8C.-32或8D.-12或48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若矩形ABCD中AB邊的長為2,則$\overrightarrow{AB}$•$\overrightarrow{AC}$的值等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)求過點(1,3)且在兩坐標(biāo)軸上截距相等的直線方程
(2)求到直線2x+3y-5=0和4x+6y+8=0的距離相等點的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.平面α截球O的球面所得圓的半徑為$\sqrt{2}$,球心O到平面α的距離為1,則此球的半徑為( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

同步練習(xí)冊答案