【題目】某大學(xué)導(dǎo)師計(jì)劃從自己所培養(yǎng)的研究生甲、乙兩人中選一人,參加雄安新區(qū)某部門(mén)組織的計(jì)算機(jī)技能大賽,兩人以往5次的比賽成績(jī)統(tǒng)計(jì)如下:(滿分100分,單位:分).

第一次

第二次

第三次

第四次

第五次

甲的成績(jī)

87

87

84

100

92

乙的成績(jī)

100

80

85

95

90

(1)試比較甲、乙二人誰(shuí)的成績(jī)更穩(wěn)定;

(2)在一次考試中若兩人成績(jī)之差的絕對(duì)值不大于2,則稱兩人“實(shí)力相當(dāng)”.若從上述5次成績(jī)中任意抽取2次,求恰有一次兩人“實(shí)力相當(dāng)”的概率.

【答案】(1)甲的成績(jī)更穩(wěn)定;(2) .

【解析】試題分析:(1)先求均值,再求方差,根據(jù)方差越小越穩(wěn)定確定結(jié)論,(2)先根據(jù)枚舉法確定5次成績(jī)中任意抽取2次所包含基本事件的總數(shù),再?gòu)闹写_定恰有一次兩人“實(shí)力相當(dāng)”的事件數(shù),最后根據(jù)古典概型概率公式求概率.

試題解析:(1)∵,

,

,

∴甲的成績(jī)更穩(wěn)定;

(2)考試有5次,任選2次,基本事件有, , , , , , 共10個(gè),

其中符合條件的事件有, , , , 共有6個(gè),

則5次考試,任取2次,恰有一次兩人“實(shí)力相當(dāng)”的概率為,

另法:這5次考試中,分?jǐn)?shù)差的絕對(duì)值分別為13,7,1,5,2,則從中任取兩次,分差絕對(duì)值的情況為共10種,

其中符合條件的情況有共6種情況,

則5次考試,任取2次,恰有一次兩人“實(shí)力相當(dāng)”的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為積極響應(yīng)國(guó)家“陽(yáng)光體育運(yùn)動(dòng)”的號(hào)召,某學(xué)校在了解到學(xué)生的實(shí)際運(yùn)動(dòng)情況后,發(fā)起以“走出教室,走到操場(chǎng),走到陽(yáng)光”為口號(hào)的課外活動(dòng)倡議。為調(diào)查該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的情況,從高一高二基礎(chǔ)年級(jí)與高三三個(gè)年級(jí)學(xué)生中按照4:3:3的比例分層抽樣,收集300位學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)),得到如圖所示的頻率分布直方圖。

(1)據(jù)圖估計(jì)該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間.并估計(jì)高一年級(jí)每周平均體育運(yùn)動(dòng)時(shí)間不足4小時(shí)的人數(shù);

(2)規(guī)定每周平均體育運(yùn)動(dòng)時(shí)間不少于6小時(shí)記為“優(yōu)秀”,否則為“非優(yōu)秀”,在樣本數(shù)據(jù)中,有30位高三學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間不少于6小時(shí),請(qǐng)完成下列列聯(lián)表,并判斷是否有99%的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間是否“優(yōu)秀”與年級(jí)有關(guān)”.

基礎(chǔ)年級(jí)

高三

合計(jì)

優(yōu)秀

非優(yōu)秀

合計(jì)

300

P(K2k0)

0.10

0.05

0.010

0.005

k0

2.706

3.841

6.635

7.879

附:K2,na+b+c+d

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)

中,內(nèi)角對(duì)邊的邊長(zhǎng)分別是,已知

的面積等于,求

,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某生物興趣小組對(duì)冬季晝夜溫差與反季節(jié)新品種大豆發(fā)芽數(shù)之間的關(guān)系進(jìn)行研究,他們分別記錄了日至日每天的晝夜溫差與實(shí)驗(yàn)室每天顆種子的發(fā)芽數(shù),得到以下表格

該興趣小組確定的研究方案是:先從這組數(shù)據(jù)中選取組數(shù)據(jù),然后用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進(jìn)行檢驗(yàn).

(1) 求統(tǒng)計(jì)數(shù)據(jù)中發(fā)芽數(shù)的平均數(shù)與方差

(2) 若選取的是日與日的兩組數(shù)據(jù),請(qǐng)根據(jù)日至日的數(shù)據(jù),求出發(fā)芽數(shù)關(guān)于溫差的線性回歸方程,若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選取的檢驗(yàn)數(shù)據(jù)的誤差不超過(guò),則認(rèn)為得到的線性回歸方程是可靠的,問(wèn)得到的線性回歸方程是否可靠? 附:線性回歸方程中斜率和截距最小二乘估法計(jì)算公式:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—4:極坐標(biāo)與參數(shù)方程

在平面直角坐標(biāo)系中,將曲線 (為參數(shù)) 上任意一點(diǎn)經(jīng)過(guò)伸縮變換后得到曲線的圖形.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知直線

Ⅰ)求曲線和直線的普通方程;

Ⅱ)點(diǎn)P為曲線上的任意一點(diǎn),求點(diǎn)P到直線的距離的最大值及取得最大值時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ) 當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)求函數(shù)在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某投資人欲將5百萬(wàn)元資金投人甲、乙兩種理財(cái)產(chǎn)品,根據(jù)銀行預(yù)測(cè),甲、乙兩種理財(cái)產(chǎn)品的收益與投入資金的關(guān)系式分別為,,其中為常數(shù)且.設(shè)對(duì)乙種產(chǎn)品投入資金百萬(wàn)元.

(Ⅰ)當(dāng)時(shí),如何進(jìn)行投資才能使得總收益最大;(總收益

(Ⅱ)銀行為了吸儲(chǔ),考慮到投資人的收益,無(wú)論投資人資金如何分配,要使得總收益不低于0.45百萬(wàn)元,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求的單調(diào)區(qū)間;

(2)若,求證:函數(shù)只有一個(gè)零點(diǎn),且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓

(Ⅰ)若圓C與x軸相切,求圓C的方程;

(Ⅱ)已知,圓與x軸相交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)).過(guò)點(diǎn)任作一條直線與圓相交于兩點(diǎn)A,B.問(wèn):是否存在實(shí)數(shù)a,使得=?若存在,求出實(shí)數(shù)a的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案