13.一個底面直徑和高都是4的圓柱的側面積為16π.

分析 利用圓柱的側面積計算公式能求出結果.

解答 解:一個底面直徑和高都是4的圓柱的側面積:
S=4π×4=16π.
故答案為:16π.

點評 本題考查圓柱的側面積的求法,是基礎題,解題時要認真審題,注意圓柱的性質(zhì)的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{1}{2}$x2-(2a+2)x+(2a+1)lnx.
(1)討論函數(shù)y=f(x)的單調(diào)性;
(2)對任意的a∈[$\frac{1}{2}$,2],x1,x2∈[1,2](x1≠x2),恒有|f(x1)-f(x2)|<λ|$\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$|,求正實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知函數(shù)f(x)=xex+c有兩個零點,則c的取值范圍是(0,$\frac{1}{e}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.函數(shù)y=$\sqrt{3-x}$+log2(x+1)的定義域為( 。
A.[-1,3)B.(-1,3)C.[-1,3]D.(-1,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)$f(x)=sinx-2\sqrt{3}{sin^2}\frac{x}{2}$
(1)求f(x)的最小正周期和單調(diào)減區(qū)間;
(2)求f(x)在區(qū)間$[0,\frac{2}{3}π]$上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.拋物線的頂點是橢圓$\frac{x^2}{25}+\frac{y^2}{16}=1$的中心,焦點是橢圓的右焦點,拋物線方程為y2=12x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.在△ABC中,角A,B,C的對邊分別為a,b,c,且$a=4,cosA=\frac{3}{4},sinB=\frac{{5\sqrt{7}}}{16},c>4$.
(1)求b;
(2)已知△ABC內(nèi)切圓的半徑$r=\frac{2S}{l}$,其中S為△ABC的面積,l為△ABC的周長,求△ABC內(nèi)切圓的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.函數(shù)f(x)=4x2-mx+5在區(qū)間[-2,+∞)上是增函數(shù),則有( 。
A.f(1)≥25B.f(1)=25C.f(1)≤25D.f(1)>25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.下列四個命題中,其中真命題是( 。
①“若xy=1,則lgx+lgy=0”的逆命題;
②“若$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow{a}$•$\overrightarrow{c}$,則$\overrightarrow{a}$⊥($\overrightarrow$-$\overrightarrow{c}$)”的否命題;
③“若b≤0,則方程x2-2bx+b2+b=0有實根”的逆否命題;
④“等邊三角形的三個內(nèi)角均為60°”的逆命題.
A.①②B.①②③④C.②③④D.①③④

查看答案和解析>>

同步練習冊答案