(08年濰坊市七模) 如圖,某建筑物的基本單元可近似地按以下方法構(gòu)作:先在地平面內(nèi)作菱形ABCD,邊長為1,∠BAD=60°,再在的上側(cè),分別以△與△為底面安裝上相同的正棱錐P-ABD與Q-CBD,∠APB=90°.
(1)求證:PQ⊥BD;
(2)求二面角P-BD-Q的余弦值;
。3)求點(diǎn)P到平面QBD的距離;
解析:(1)由P-ABD,Q-CBD是相同正三棱錐,可知△PBD與△QBD是全等等腰△.取BD中點(diǎn)E,連結(jié)PE、QE,則BD⊥PE,BD⊥QE.故BD⊥平面PQE,從而BD⊥PQ.
。2)由(1)知∠PEQ是二面角P-BD-Q的平面角,作PM⊥平面,垂足為M,作QN⊥平面,垂足為N,則PM∥QN,M、N分別是正△ABD與正△BCD的中心,從而點(diǎn)A、M、E、N、C共線,PM與QN確定平面PACQ,且PMNQ為矩形.可得ME=NE=,PE=QE=,PQ=MN=,∴ cos∠PEQ=,即二面角平面角為.
。3)由(1)知BD⊥平面PEQ.設(shè)點(diǎn)P到平面QBD的距離為h,則
∴ .
∴ . ∴ .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(08年西安市第一中學(xué)五模理)(12分) 已知長度為的線段的兩端點(diǎn)在拋物線上移動(dòng),求線段的中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年江蘇百校樣本分析)(10分)挑選空軍飛行學(xué)員可以說是“萬里挑一”,要想通過需過“五關(guān)”――目測、初檢、復(fù)檢、文考、政審等. 某校甲、乙、丙三個(gè)同學(xué)都順利通過了前兩關(guān),有望成為光榮的空軍飛行學(xué)員. 根據(jù)分析,甲、乙、丙三個(gè)同學(xué)能通過復(fù)檢關(guān)的概率分別是0.5,0.6,0.75,能通過文考關(guān)的概率分別是0.6,0.5,0.4,通過政審關(guān)的概率均為1.后三關(guān)相互獨(dú)立.
(1)求甲、乙、丙三個(gè)同學(xué)中恰有一人通過復(fù)檢的概率;
(2)設(shè)通過最后三關(guān)后,能被錄取的人數(shù)為,求隨機(jī)變量的期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年周至二中三模理) 已知等差數(shù)列{an}的公差為2,若a1,a3,a4成等比數(shù)列,則a2等于 ( )
(A)-4 (B)-6 (C)-8 (D)-10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年濱州市質(zhì)檢三文)(12分)已知函數(shù).
(I)當(dāng)m>0時(shí),求函數(shù)的單調(diào)遞增區(qū)間;
(II)是否存在小于零的實(shí)數(shù)m,使得對(duì)任意的,都有,若存在,求m的范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com