給定常數(shù)c>0,定義函數(shù)f(x)=2|x+c+4|-|x+c|.數(shù)列a1,a2,a3,…滿足an+1=f(an),n∈N*
(1)若a1=-c-2,求a2及a3;
(2)求證:對任意n∈N*,an+1-an≥c;
(3)是否存在a1,使得a1,a2,…,an,…成等差數(shù)列?若存在,求出所有這樣的a1;若不存在,說明理由.
【答案】分析:(1)對于分別取n=1,2,an+1=f(an),n∈N*.去掉絕對值符合即可得出;
(2)由已知可得f(x)=,分三種情況討論即可證明;
(3)由(2)及c>0,得an+1≥an,即{an}為無窮遞增數(shù)列.分以下三種情況討論:當a1<-c-4時,當-c-4≤a1<-c時,當a1≥-c時.即可得出a1的取值范圍.
解答:解:(1)a2=f(a1)=f(-c-2)=2|-c-2+c+4|-|-c-2+c|=4-2=2,
a3=f(a2)=f(2)=2|2+c+4|-|2+c|=2(6+c)-(c+2)=10+c.
(2)由已知可得f(x)=
當an≥-c時,an+1-an=c+8>c;
當-c-4≤an<-c時,an+1-an=2an+3c+8≥2(-c-4)+3c+8=c;
當an<-c-4時,an+1-an=-2an-c-8>-2(-c-4)-c-8=c.
∴對任意n∈N*,an+1-an≥c;
(3)由(2)及c>0,得an+1≥an,即{an}為無窮遞增數(shù)列.
又{an}為等差數(shù)列,所以存在正數(shù)M,當n>M時,an≥-c,從而an+1=f(an)=an+c+8,由于{an}為等差數(shù)列,
因此公差d=c+8.
①當a1<-c-4時,則a2=f(a1)=-a1-c-8,
又a2=a1+d=a1+c+8,故-a1-c-8=a1+c+8,即a1=-c-8,從而a2=0,
當n≥2時,由于{an}為遞增數(shù)列,故an≥a2=0>-c,
∴an+1=f(an)=an+c+8,而a2=a1+c+8,故當a1=-c-8時,{an}為無窮等差數(shù)列,符合要求;
②若-c-4≤a1<-c,則a2=f(a1)=3a1+3c+8,又a2=a1+d=a1+c+8,∴3a1+3c+8=a1+c+8,得a1=-c,應舍去;
③若a1≥-c,則由an≥a1得到an+1=f(an)=an+c+8,從而{an}為無窮等差數(shù)列,符合要求.
綜上可知:a1的取值范圍為{-c-8}∪[-c,+∞).
點評:本題綜合考查了分類討論的思方法、如何絕對值符號、遞增數(shù)列、等差數(shù)列等基礎知識與方法,考查了推理能力和計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•上海)給定常數(shù)c>0,定義函數(shù)f(x)=2|x+c+4|-|x+c|.數(shù)列a1,a2,a3,…滿足an+1=f(an),n∈N*
(1)若a1=-c-2,求a2及a3
(2)求證:對任意n∈N*,an+1-an≥c;
(3)是否存在a1,使得a1,a2,…,an,…成等差數(shù)列?若存在,求出所有這樣的a1;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:設計必修一數(shù)學(人教A版) 人教A版 題型:022

若函數(shù)f(x)、g(x)在給定的區(qū)間上具有單調(diào)性,利用增(減)函數(shù)的定義容易證得,在這個區(qū)間上:

(1)函數(shù)f(x)與f(x)+C(C為常數(shù))具有________的單調(diào)性.

(2)C>0時,函數(shù)f(x)與C·f(x)具有________的單調(diào)性;C<0時,函數(shù)f(x)與C·f(x)具有________的單調(diào)性.

(3)若f(x)≠0,則函數(shù)f(x)與具有________的單調(diào)性.

(4)若函數(shù)f(x)、g(x)都是增(減)函數(shù),則f(x)+g(x)仍是增(減)函數(shù).

(5)若f(x)>0,g(x)>0,且f(x)與g(x)都是增(減)函數(shù),則f(x)·g(x)是________(________)函數(shù);若f(x)<0,g(x)<0,且f(x)與g(x)都是增(減)函數(shù),則f(x)·g(x)是________(________)函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:導練必修一數(shù)學蘇教版 蘇教版 題型:022

若函數(shù)f(x)、g(x)在給定的區(qū)間上具有單調(diào)性,利用增(減)函數(shù)的定義容易證得在這個區(qū)間上:

(1)函數(shù)f(x)與f(x)+C(C為常數(shù))具有________的單調(diào)性.

(2)C>0時,函數(shù)f(x)與C·f(x)具有________的單調(diào)性;C<0時,函數(shù)f(x)與C·f(x)具有________的單調(diào)性.

(3)若f(x)≠0,則函數(shù)f(x)與具有________的單調(diào)性.

(4)若f(x)、g(x)都是增(減)函數(shù),則f(x)+g(x)是________函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:上海 題型:解答題

給定常數(shù)c>0,定義函數(shù)f(x)=2|x+c+4|-|x+c|.數(shù)列a1,a2,a3,…滿足an+1=f(an),n∈N*
(1)若a1=-c-2,求a2及a3;
(2)求證:對任意n∈N*,an+1-an≥c;
(3)是否存在a1,使得a1,a2,…,an,…成等差數(shù)列?若存在,求出所有這樣的a1;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案