【題目】已知關(guān)于的一次函數(shù).

1)設(shè)集合,分別從集合中隨機(jī)取一個(gè)數(shù)作為,求函數(shù)是增函數(shù)的概率;

2)實(shí)數(shù)滿足條件,求函數(shù)的圖象經(jīng)過第一、二、三象限的概率.

【答案】(1;(2.

【解析】試題分析:(1)全部結(jié)果的基本事件有共個(gè)基本事件,設(shè)使函數(shù)為增函數(shù)的事件為個(gè)基本事件,所以;(2)要使函數(shù)的圖象過第一、二、三象限,則,故使函數(shù)圖象過第一、二、三象限的的區(qū)域?yàn)榈谝幌笙薜年幱安糠,利用圖形面積比即可求概率為

試題解析:解:(1)抽取的全部結(jié)果的基本事件有:

,共個(gè)基本事件,設(shè)使函數(shù)為增函數(shù)的事件為,則包含的基本事件有: 個(gè)基本事件,所以.

2滿足條件的區(qū)域如圖所示,

要使函數(shù)的圖象過第一、二、三象限,則,故使函數(shù)圖象過第一、二、三象限的的區(qū)域?yàn)榈谝幌笙薜年幱安糠,所以所求事件的概率?/span>.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),直線,動(dòng)點(diǎn)到點(diǎn)的距離等于它到直線的距離.

(Ⅰ)求點(diǎn)的軌跡的方程;

(Ⅱ)是否存在過的直線,使得直線被曲線截得的弦恰好被點(diǎn)所平分?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:的離心率為,點(diǎn)在橢圓C上.

1求橢圓C的方程;

2設(shè)動(dòng)直線與橢圓C有且僅有一個(gè)公共點(diǎn),判斷是否存在以原點(diǎn)O為圓心的圓,滿足此圓與相交兩點(diǎn),兩點(diǎn)均不在坐標(biāo)軸上,且使得直線, 的斜率之積為定值?若存在,求此圓的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為.

(1)求橢圓的方程式;

(2)已知?jiǎng)又本與橢圓相交于兩點(diǎn).

①若線段中點(diǎn)的橫坐標(biāo)為,求斜率的值;

②已知點(diǎn),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴(yán)重缺水的國家之一,城市缺水問題較為突出.某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸),一位居民的月用水量不超過的部分按平價(jià)收費(fèi),超出的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:),將數(shù)據(jù)按照…,分成9組,制成了如圖所示的頻率分布直方圖.

(1)求直方圖中的值;

(2)若該市有110萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),請(qǐng)說明理由;

(3)估計(jì)居民月均用水量的中位數(shù)(精確到0.01)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ax2-a-lnx,其中aR.

)討論f(x)的單調(diào)性;

)當(dāng)時(shí),恒成立,求a的取值范圍.(其中,e=2.718為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

)當(dāng)時(shí),求曲線處的切線方程;

)當(dāng)時(shí),若不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象過,若有4個(gè)不同的正數(shù)滿足,且,則從這四個(gè)數(shù)中任意選出兩個(gè),它們的和不超過5的概率為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸,焦距為2,且長軸長是短軸長的倍.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè),過橢圓左焦點(diǎn)的直線、兩點(diǎn),若對(duì)滿足條件的任意直線,不等式)恒成立,求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案