如圖,在正方體ABCD-A1B1C1D1中,E是棱CC1的中點(diǎn).
(Ⅰ)證明:AC1∥平面BDE;
(Ⅱ)證明:AC1⊥BD.
分析:(Ⅰ)根據(jù)線面平行的判定定理證明:AC1∥平面BDE;
(Ⅱ)根據(jù)線面垂直的性質(zhì),先證明BD⊥平面ACC1,然后證明AC1⊥BD.
解答:解:( I)證明:連接AC交BD于O,連接OE,
∵ABCD是正方形,
∴O為AC的中點(diǎn),
∵E是棱CC1的中點(diǎn),
∴AC1∥OE.
又∵AC1?平面BDE,OE?平面BDE,
∴AC1∥平面BDE.
( II)證明:
∵ABCD是正方形,
∴AC⊥BD.
∵CC1⊥平面ABCD,且BD?平面ABCD,
∴CC1⊥BD.
又∵CC1∩AC=C,
∴BD⊥平面ACC1
又∵AC1?平面ACC1,
∴AC1⊥BD.
點(diǎn)評:本題主要考查空間直線和平面平行或垂直的判定定理和性質(zhì)定理的應(yīng)用,要求熟練掌握相應(yīng)的判定定理和性質(zhì)定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)若Rt△ABC中兩直角邊為a、b,斜邊c上的高為h,則
1
h2
=
1
a2
+
1
b2
,如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,記M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M、N的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,記M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M,N的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)若Rt△ABC中兩直角邊為a、b,斜邊c上的高為h,則
1
h2
=
1
a2
+
1
b2
,如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,類比平面幾何中的結(jié)論,得到此三棱錐中的一個正確結(jié)論為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E為DD1的中點(diǎn),
(1)求證:AC⊥平面D1DB;
(2)BD1∥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,點(diǎn)P是上底面A1B1C1D1內(nèi)一動點(diǎn),則三棱錐P-ABC的主視圖與左視圖的面積的比值為( 。

查看答案和解析>>

同步練習(xí)冊答案