【題目】圓(x+1)2+y2=8內(nèi)有一點P(﹣1,2),AB過點P,
(1)若弦長 ,求直線AB的傾斜角;
(2)若圓上恰有三點到直線AB的距離等于 ,求直線AB的方程.

【答案】
(1)解:設(shè)圓心(﹣1,0)到直線AB的距離為d,則 d= =1,設(shè)直線AB的傾斜角α,斜率為k,

則直線AB的方程 y﹣2=k(x+1),即 kx﹣y+k+2=0,d=1= ,

∴k= 或﹣ ,

∴直線AB的傾斜角α=60°或 120°.


(2)解:∵圓上恰有三點到直線AB的距離等于 ,

∴圓心(﹣1,0)到直線AB的距離d= = ,

直線AB的方程 y﹣2=k(x+1),

即kx﹣y+k+2=0,

由d= =

解可得k=1或﹣1,

直線AB的方程 x﹣y+3=0 或﹣x﹣y+1=0.


【解析】(1)由弦長公式求出圓心到直線AB的距離,點斜式設(shè)出直線方程,由點到直線的距離公式求出斜率,再由斜率求傾斜角.(2)由題意知,圓心到直線AB的距離d= ,由點到直線的距離公式求出斜率,點斜式寫出直線方程,并化為一般式.
【考點精析】根據(jù)題目的已知條件,利用直線的傾斜角和一般式方程的相關(guān)知識可以得到問題的答案,需要掌握當(dāng)直線l與x軸相交時, 取x軸作為基準(zhǔn), x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角.特別地,當(dāng)直線l與x軸平行或重合時, 規(guī)定α=0°;直線的一般式方程:關(guān)于的二元一次方程(A,B不同時為0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知p:{x|x≥﹣2},q:{x|x<3},請寫出滿足下列條件的x的集合:
(1)p∧q為真;
(2)p真q假;
(3)p假q真.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正三棱錐P﹣ABC中,D,E分別是AB,BC的中點.
(1)求證:DE∥平面PAC;
(2)求證:AB⊥PC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)一種機器的固定成本為0.5萬元,但每生產(chǎn)1百臺時,又需可變成本(即另增加投入)0.25萬元.市場對此商品的年需求量為5百臺,銷售的收入(單位:萬元)函數(shù)為:R(x)=5x﹣ x2(0≤x≤5),其中x是產(chǎn)品生產(chǎn)的數(shù)量(單位:百臺).
(1)將利潤表示為產(chǎn)量的函數(shù);
(2)年產(chǎn)量是多少時,企業(yè)所得利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,AB=5,BC=4,AC=CC1=3,D為AB的中點

(1)求證:AC⊥BC1
(2)求異面直線AC1與CB1所成角的余弦值;
(3)求二面角D﹣CB1﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓x2+y2+x﹣6y+m=0和直線x+2y﹣3=0交于P、Q兩點,
(1)求實數(shù)m的取值范圍;
(2)求以PQ為直徑且過坐標(biāo)原點的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>0且a≠1,設(shè)
命題p:函數(shù)y=logax在區(qū)間(0,+∞)內(nèi)單調(diào)遞減;
q:曲線y=x2+(2a﹣3)x+1與x軸有兩個不同的交點,
如果p∧q為真命題,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某流程圖如圖所示,現(xiàn)輸入如下四個函數(shù),則可以輸出的函數(shù)是(

A.f(x)=
B.f(x)=ln( ﹣x)
C.f(x)=
D.f(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(﹣3,1), =(1,﹣2), = +k (k∈R).
(1)若 與向量2 垂直,求實數(shù)k的值;
(2)若向量 =(1,﹣1),且 與向量k + 平行,求實數(shù)k的值.

查看答案和解析>>

同步練習(xí)冊答案