【題目】已知公差不為零的等差數(shù)列{an}滿足:a3+a8=20,且a5是a2與a14的等比中項.
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{bn}滿足,求數(shù)列{bn}的前n項和Sn.
【答案】(1)an=2n﹣1(2)Sn=
【解析】
(1)根據(jù)等差數(shù)列的通項公式列方程組,求出首項和公差即可得出通項公式;
(2)利用分組求和法,結合等比數(shù)列求和公式和等差數(shù)列求和公式得到結果.
(1)公差d不為零的等差數(shù)列{an}滿足:a3+a8=20,且a5是a2與a14的等比中項,
可得2a1+9d=20,a52=a2a14,
即(a1+4d)2=(a1+d)(a1+13d),
解得a1=1,d=2,
則an=1+2(n﹣1)=2n﹣1;
(2)4n+n,
數(shù)列{bn}的前n項和
Sn=(4+16+…+4n)+(1+2+…+n)
n(n+1).
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,曲線:(為參數(shù)).以原點為極點,軸的正半軸為極軸建立極坐標系,曲線:.
(1)求的普通方程和的直角坐標方程;
(2)若曲線與交于,兩點,,的中點為,點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(,為常數(shù)).
(1)當時,若方程有實根,求的最小值;
(2)設,若在區(qū)間上是單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】根據(jù)如圖給出的2005年至2016年我國人口總量及增長率的統(tǒng)計圖,以下結論不正確的是
A. 自2005年以來,我國人口總量呈不斷增加趨勢
B. 自2005年以來,我國人口增長率維持在上下波動
C. 從2005年后逐年比較,我國人口增長率在2016年增長幅度最大
D. 可以肯定,在2015年以后,我國人口增長率將逐年變大
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù),如果存在實數(shù)使得,那么稱為的線性函數(shù).
(1)下面給出兩組函數(shù),判斷是否分別為的線性函數(shù)?并說明理由;
第一組:
第二組::
(2)設,線性函數(shù)為.若等式在上有解,求實數(shù)的取值范圍;
(3)設,取.線性函數(shù)圖像的最低點為.若對于任意正實數(shù)且.試問是否存在最大的常數(shù),使恒成立?如果存在,求出這個的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C的參數(shù)方程為(α為參數(shù)),在以坐標原點O為極點,x軸的正半軸為極軸的極坐標系中,點P的極坐標為,直線l的極坐標方程為.
(1)求直線l的直角坐標方程與曲線C的普通方程;
(2)若Q是曲線C上的動點,M為線段PQ的中點,直線l上有兩點A,B,始終滿足|AB|=4,求△MAB面積的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若橢圓的焦點在x軸上,離心率為,依次連接的四個頂點所得四邊形的面積為40.
(1)試求的標準方程;
(2)若曲線M上任意一點到的右焦點的距離與它到直線的距離相等,直線經(jīng)過的下頂點和右頂點,,直線與曲線M相交于點P、Q(點P在第一象限內(nèi),點Q在第四象限內(nèi)),設的下頂點是B,上頂點是D,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的值域為A,.
(1)當的為偶函數(shù)時,求的值;
(2) 當時, 在A上是單調(diào)遞增函數(shù),求的取值范圍;
(3)當時,(其中),若,且函數(shù)的圖象關于點對稱,在處取 得最小值,試探討應該滿足的條件.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com