分析 (I)若m=1,則函數(shù)f(x)=x2-2x-3的圖象是開(kāi)口朝上,且以x=1為對(duì)稱軸的拋物線,結(jié)合二次函數(shù)的圖象和性質(zhì),求出函數(shù)在區(qū)間[0,3]上的最值,可得f(x)在區(qū)間[0,3]上的值域;
(Ⅱ)若不等式f(x)≥0的解集為(-∞,-1]∪[3,+∞),則-1,3為方程x2-2mx+m-4=0的兩根,由韋達(dá)定理,可得實(shí)數(shù)m的值;
(Ⅲ)若方程f(x)=0的一個(gè)根小于0,另一個(gè)根大于2,則$\left\{\begin{array}{l}f(0)<0\\ f(2)<0\end{array}\right.$,解得實(shí)數(shù)m的取值范圈.
解答 解:(I)若m=1,則函數(shù)f(x)=x2-2x-3的圖象是開(kāi)口朝上,且以x=1為對(duì)稱軸的拋物線,
區(qū)間[0,3]上,當(dāng)x=1時(shí),函數(shù)取最小值-4;當(dāng)x=3時(shí),函數(shù)取最大值0,
故f(x)在區(qū)間[0,3]上的值域?yàn)閇-4,0];
(Ⅱ)若不等式f(x)≥0的解集為(-∞,-1]∪[3,+∞),
則-1,3為方程x2-2mx+m-4=0的兩根,
故-1+3=2m,-1×3=m-4,
解得:m=1;
(Ⅲ)若方程f(x)=0的一個(gè)根小于0,另一個(gè)根大于2,
則$\left\{\begin{array}{l}f(0)<0\\ f(2)<0\end{array}\right.$,即$\left\{\begin{array}{l}m-4<0\\-3m<0\end{array}\right.$,
解得:m∈(0,4).
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 22006-1 | B. | 22006+1 | C. | 22015+1 | D. | 22015-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {1,3,4} | B. | {3,4} | C. | {3} | D. | {4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -3,4π,$\frac{π}{8}$ | B. | 3,4π,-$\frac{π}{8}$ | C. | 3,π,-$\frac{π}{8}$ | D. | -3,π,$\frac{π}{8}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com