10.i是虛數(shù)單位,i+i2+i3+…+i2017=( 。
A.1B.iC.i2D.-i

分析 由等比數(shù)列的前n項(xiàng)和化簡,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡得答案.

解答 解:i+i2+i3+…+i2017=$\frac{i(1-{i}^{2017})}{1-i}=\frac{i(1-i)}{1-i}=i$.
故選:B.

點(diǎn)評 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查虛數(shù)單位i的性質(zhì),是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,四邊形ABCD為矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于點(diǎn)F,且點(diǎn)F在CE上.
(1)求證:DE⊥BE;
(2)求四棱錐E-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,$0<φ<\frac{π}{2}$)的周期為π,且圖象上一個最低點(diǎn)為$M({\frac{2π}{3}\;,\;\;-2})$.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)$x∈[{0\;,\;\;\frac{π}{12}}]$,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=x2和g(x)=lnx,作一條平行于y軸的直線,交f(x),g(x)圖象于A,B兩點(diǎn),則|AB|的最小值為$\frac{1}{2}$-ln$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知z=(m+3)+(m-1)i在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在第三象限,則實(shí)數(shù)m的取值范圍是(  )
A.(-3,1)B.(-1,3)C.(1,+∞)D.(-∞,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列四個圖中,函數(shù)y=$\frac{ln|x+1|}{x+1}$的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.給出下列3個命題:
命題p:若a2≥20,則方程x2+y2+ax+5=0表示一個圓.
命題q:?m∈(-∞,0),方程0.1x+msinx=0總有實(shí)數(shù)解.
命題r:?m∈(1,3),msinx+mcosx=3$\sqrt{2}$.
那么,下列命題為真命題的是( 。
A.p∨rB.p∧(¬q)C.(¬q)∧(¬r)D.(¬p)∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)g(x)=$\frac{p+x}{x-2}$,且函數(shù)f(x)=logag(x)(a>0,a≠1)奇函數(shù)而非偶函數(shù).
(1)寫出f(x)在(a,+∞)上的單調(diào)性(不必證明);
(2)當(dāng)x∈(r,a-3)時,f(x)的取值范圍恰為(1,+∞),求a與r的值;
(3)設(shè)h(x)=$\sqrt{(x-2)g(x)}$-m(x+2)-2是否得在實(shí)數(shù)m使得函數(shù)y=h(x)有零點(diǎn)?若存在,求出實(shí)數(shù)m的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知定點(diǎn)A(-5,0),B(5,4),點(diǎn)P為雙曲線$C:\frac{x^2}{16}-\frac{y^2}{9}=1$右支上任意一點(diǎn),則|PB|-|PA|的最大值為-4.

查看答案和解析>>

同步練習(xí)冊答案