已知函數(shù)f(x)=(sinx+cosx)2-1,x∈R,則f(x)的最小正周期是(  )
A、2π
B、
2
C、π
D、
π
2
考點(diǎn):三角函數(shù)的周期性及其求法
專題:三角函數(shù)的圖像與性質(zhì)
分析:利用三角函數(shù)間的關(guān)系式可化簡(jiǎn)f(x)=sin2x,從而可求得f(x)的最小正周期.
解答: 解:∵f(x)=(sinx+cosx)2-1
=sin2x+2sinxcosx+cos2x-1
=2sinxcosx
=sin2x,
∴f(x)的最小正周期T=
2
=π,
故選:C.
點(diǎn)評(píng):本題考查三角函數(shù)的周期性及其求法,考查三角函數(shù)間的關(guān)系式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和Sn,a3+a8=5,則S10=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在曲線f(x)=x3-2x2+1上點(diǎn)(1,f(1))處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A、B兩地相距1千米,B、C兩地相距3千米,甲從A地出發(fā),經(jīng)過B前往C地,乙同時(shí)從B地出發(fā),前往C地,甲、乙的速度關(guān)于時(shí)間的關(guān)系式分別為v1(t)=
4
t+1
和v2(t)=t(單位:千米/小時(shí)).甲、乙從起點(diǎn)到終點(diǎn)的過程中,給出下列描述:
①出發(fā)后1小時(shí),甲還沒追上乙;
②出發(fā)后1小時(shí),甲乙相距最遠(yuǎn);
③甲追上乙后,又被乙追上,乙先到達(dá)C地;
④甲追上乙后,先到達(dá)C地.
其中正確的是
 
.(請(qǐng)?zhí)钌纤忻枋稣_的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log0.5[sin(
π
3
-2x)]的單調(diào)增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于實(shí)數(shù)x,y,“x2+y2>2”是“|x|>1且|y|>1”的(  )
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是R上的偶函數(shù),若對(duì)于x≥0,都有f(x+2)=f(x),且當(dāng)x∈[0,2)時(shí),f(x)=log2(x+1),則當(dāng)x∈(-∞,+∞)時(shí),f(-2011)+f(2012)的值為(  )
A、-2B、-1C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l與圓x2+y2+2x-4y+1=0相交于A,B兩點(diǎn),若弦AB的中點(diǎn)為拋物線x2=4y的焦點(diǎn),則直線l的方程為( 。
A、2x+3y-3=0
B、x-y-1=0
C、x+y-1=0
D、x-y+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊過點(diǎn)P(
1
3
,-
2
2
3
),則sinα的值為( 。
A、-
2
2
3
B、
1
3
C、
2
2
3
D、
2
3

查看答案和解析>>

同步練習(xí)冊(cè)答案