【題目】已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間和極值;

(Ⅱ)若,均有,求實數(shù)的取值范圍.

【答案】(1) 增區(qū)間是,減區(qū)間是,函數(shù)有極小值為 ;(2) .

【解析】試題分析:I)先求函數(shù)的導函數(shù)f′(x),再解不等式f′(x)0,得函數(shù)的單調(diào)增區(qū)間,解不等式f′(x)0得函數(shù)的單調(diào)減區(qū)間,最后由極值定義求得函數(shù)極值

(II)構造新函數(shù),將恒成立問題轉化為求新函數(shù)的最大值問題,利用導數(shù)先求此函數(shù)的單調(diào)區(qū)間,再確定其最大值,最后解不等式求得實數(shù)a的取值范圍

試題解析:

由題意,

(Ⅰ)由,函數(shù)的單調(diào)增區(qū)間是;

,函數(shù)的單調(diào)減區(qū)間是

∴當時,函數(shù)有極小值為

(Ⅱ)法一,由于,均有,

恒成立,

,

由(Ⅰ),函數(shù)極小值即為最小值,

,解得

法二,因為,所以不等式等價于,即

,則,

顯然當時, ,函數(shù)單調(diào)遞增;

時, ,函數(shù)單調(diào)遞減,

所以函數(shù)的最大值為,

由不等式恒成立可得,解得

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若曲線在點處得切線方程與直線垂直,求的值;

(Ⅱ)若上為單調(diào)遞減函數(shù),求的取值范圍;

(Ⅲ)設,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)的圖象上存在關于軸對稱的點,則實數(shù)的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率,右焦點,過點的直線交橢圓兩點.

(1)求橢圓的方程;

(2)若點關于軸的對稱點為 ,求證: 三點共線;

(3) 當面積最大時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】班主任為了對本班學生的考試成績進行分析,決定從全班位女同學, 位男同學中隨機

抽取一個容量為的樣本進行分析.

(Ⅰ)如果按性別比例分層抽樣,求樣本中男生、女生人數(shù)分別是多少;

(Ⅱ)隨機抽取位同學,數(shù)學成績由低到高依次為: ;物理成績由低到高依次為: ,若規(guī)定分(含分)以上為優(yōu)秀,記為這位同學中數(shù)學和物理分數(shù)均為優(yōu)秀的人數(shù),求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2016年入冬以來,各地霧霾天氣頻發(fā), 頻頻爆表(是指直徑小于或等于2.5微米的顆粒物),各地對機動車更是出臺了各類限行措施,為分析研究車流量與的濃度是否相關,某市現(xiàn)采集周一到周五某一時間段車流量與的數(shù)據(jù)如下表:

時間

周一

周二

周三

周四

周五

車流量(萬輛)

50

51

54

57

58

的濃度(微克/立方米)

69

70

74

78

79

(1)請根據(jù)上述數(shù)據(jù),在下面給出的坐標系中畫出散點圖;

(2)試判斷是否具有線性關系,若有請求出關于的線性回歸方程,若沒有,請說明理由;

(3)若周六同一時間段的車流量為60萬輛,試根據(jù)(2)得出的結論,預報該時間段的的濃度(保留整數(shù)).

參考公式: , .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個銷售季度內(nèi),每售出該產(chǎn)品獲利潤500元,未售出的產(chǎn)品,每虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場需求量的頻率分布直圖,如圖所示.經(jīng)銷商為下一個銷售季度購進了該農(nóng)產(chǎn)品.以)表示下一個銷售季度內(nèi)的市場需求量, (單位:元)表示下一個銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤.

(Ⅰ)將表示為的函數(shù);

(Ⅱ)根據(jù)直方圖估計利潤不少于57000元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,曲線的參數(shù)方程為 為參數(shù)),在以為極點, 軸的正半軸為極軸的極坐標系中,曲線是圓心在極軸上,且經(jīng)過極點的圓.已知曲線上的點對應的參數(shù),射線與曲線交于點.

(Ⅰ)求曲線的直角坐標方程;

(Ⅱ)若點, 在曲線上,求的值.

查看答案和解析>>

同步練習冊答案