20.( I)已知x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,計算:$\frac{{x}^{2}+{x}^{-2}-7}{x+{x}^{-1}+3}$;
( II)求(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-(-9.6)0-(3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+(1.5)-2的值.

分析 (Ⅰ)采取平方法即可化簡求值,
(Ⅱ)根據(jù)指數(shù)冪的運算性質計算即可.

解答 解:(Ⅰ)∵x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,
∴x+x-1=7,
∴x2+x-2=47,
∴原式=$\frac{47-7}{7+3}$=4;
(Ⅱ)原式=$\frac{3}{2}$-1-($\frac{3}{2}$)${\;}^{3×(-\frac{2}{3})}$+$\frac{4}{9}$=$\frac{1}{2}$-$\frac{4}{9}$+$\frac{4}{9}$=$\frac{1}{2}$.

點評 本題考查了指數(shù)冪的運算性質,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

10.設函數(shù)f(x)=lg(x2+ax-a-1),給出下述命題:
①f(x)有最小值;
②當a=0時,f(x)的值域為R;
③若f(x)在區(qū)間[2,+∞)上單調遞增,則實數(shù)a的取值范圍是a≥-4;
④a=1時,f(x)的定義域為(-1,0);
則其中正確的命題的序號是②.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)f(x)的圖象是連續(xù)不斷的,給出x,f(x)對應值如表:
x123456
f(x)23.521.4-7.811.5-5.7-12.4
函數(shù)f(x)在區(qū)間[1,6]上的零點至少有( 。
A.2個B.3個C.4個D.5個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.函數(shù)f(x)=2x-8的零點是(  )
A.3B.(3,0)C.4D.(4,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.函數(shù)y=$\frac{\sqrt{4-x}}{{x}^{2}-1}$的定義域為{x|x≤4且x≠±1}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.函數(shù)y=2cos($\frac{π}{3}$x+$\frac{π}{6}$)圖象上的最高點與最低點的最短距離是( 。
A.2B.4C.5D.2$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知全集U=R,集合A={x|x>4},B={x|-6<x<6}.
(1)求A∩B和A∪B;
(2)求∁UB;
(3)定義A-B={x|x∈A,且x∉B},求A-B,A-(A-B).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.執(zhí)行如圖所示的程序框圖,則輸出的k的值是( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,AB是半圓O的直徑,C是半圓O上除A、B外的一個動點,DC垂直于半圓O所在的平面,DC∥EB,DC=EB=1,AB=4.
(Ⅰ)證明:平面ADE⊥平面ACD;
(Ⅱ)若AC=BC,求二面角D-AE-B的余弦值.

查看答案和解析>>

同步練習冊答案