已知動點(diǎn)M到定點(diǎn)與到定點(diǎn)的距離之比為3.
(Ⅰ)求動點(diǎn)M的軌跡C的方程,并指明曲線C的軌跡;
(Ⅱ)設(shè)直線,若曲線C上恰有兩個點(diǎn)到直線的距離為1,
求實(shí)數(shù)的取值范圍。
(Ⅰ),以為圓心,為半徑的圓;
(Ⅱ)
解析試題分析:(Ⅰ)設(shè)點(diǎn),由已知得,化簡,得動點(diǎn)的軌跡方程,并說明軌跡類型;(Ⅱ)平面內(nèi)到定直線的距離等于1的點(diǎn)在兩條與已知直線平行,且距離等于1的平行線上,∴只需讓曲線與這兩條平行線有兩個公共點(diǎn)即可,當(dāng)由圖得圓心到直線的距離時,圓上有一個點(diǎn)到直線的距離等于1,直線向上移時圓上有兩個點(diǎn)到直線距離等于1,當(dāng),圓上有1個點(diǎn)到直線距離等于1,繼續(xù)向上移動時圓上無滿足條件的點(diǎn),∴滿足,即,解不等式可得的取值范圍.
試題解析:(Ⅰ) 解;設(shè)點(diǎn) ,由已知可得 2分
整理得:即為M的軌跡方程 4分
曲線C的軌跡是以為圓心,為半徑的圓 6分
(Ⅱ)設(shè)圓心到直線的距離為,當(dāng)時,符合題意 8分
,即,
當(dāng)時, 9分
當(dāng)時, 10分
的取值范圍是: 12分
考點(diǎn):1、點(diǎn)到直線的距離;2、曲線的軌跡方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓A過點(diǎn),且與圓B:關(guān)于直線對稱.
(1)求圓A的方程;
(2)若HE、HF是圓A的兩條切線,E、F是切點(diǎn),求的最小值。
(3)過平面上一點(diǎn)向圓A和圓B各引一條切線,切點(diǎn)分別為C、D,設(shè),求證:平面上存在一定點(diǎn)M使得Q到M的距離為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
有一個不透明的袋子,裝有4個完全相同的小球,球上分別編有數(shù)字1,2,3,4,
(1)若逐個不放回取球兩次,求第一次取到球的編號為偶數(shù)且兩個球的編號之和能被3整除的概率;
(2)若先從袋中隨機(jī)取一個球,該球的編號為a,將球放回袋中,然后再從袋中隨機(jī)取一個球,該球的編號為b,求直線ax+by+1=0與圓有公共點(diǎn)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓C: 直線
(1)證明:不論取何實(shí)數(shù),直線與圓C恒相交;
(2)求直線被圓C所截得的弦長的最小值及此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,己知圓P在x軸上截得線段長為2,在軸上截得線段長為.
(Ⅰ)求圓心P的軌跡方程;
(Ⅱ)若P點(diǎn)到直線y=x的距離為,求圓P的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓,直線過定點(diǎn).
(1)求圓心的坐標(biāo)和圓的半徑;
(2)若與圓C相切,求的方程;
(3)若與圓C相交于P,Q兩點(diǎn),求三角形面積的最大值,并求此時的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
已知⊙C經(jīng)過點(diǎn)、兩點(diǎn),且圓心C在直線上.
(1)求⊙C的方程;
(2)若直線與⊙C總有公共點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com