設(shè)x,y滿足約束條件,則z=3x+y的最大值為( )
A.5
B.3
C.7
D.-8
【答案】分析:首先作出可行域,再作出直線l:y=-3x,將l平移與可行域有公共點,直線y=-3x+z在y軸上的截距最大時,z有最大值,求出此時直線y=-3x+z經(jīng)過的可行域內(nèi)的點A的坐標(biāo),代入z=3x+y中即可.
解答:解:如圖,作出可行域,作出直線l:y=-3x,將l平移至過點A(3,-2)處時,函數(shù)z=3x+y有最大值7.
故選C.
點評:本題考查線性規(guī)劃問題,考查數(shù)形結(jié)合思想.解答的步驟是有兩種方法:一種是:畫出可行域畫法,標(biāo)明函數(shù)幾何意義,得出最優(yōu)解.另一種方法是:由約束條件畫出可行域,求出可行域各個角點的坐標(biāo),將坐標(biāo)逐一代入目標(biāo)函數(shù),驗證,求出最優(yōu)解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x+y≤1
y≤x
y≥-2
,則z=3x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
3x-y-6≤0
x-y+2≥0
x≥0,y≥0
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為12,則
3
a
+
2
b
的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•奉賢區(qū)二模)(文)設(shè)x,y滿足約束條件
x≥0
y≥0
x
3a
+
y
4a
≤1
z=
y+1
x+1
的最小值為
1
4
,則a的值
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x-y+2≥0
4x-y-4≤0
x≥0
y≥0
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為6,則w=2ab的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x+y≥0
x-y+3≥0
x≤3
,則z=2x-y的最大值為
 

查看答案和解析>>

同步練習(xí)冊答案