分析:先根據(jù)約束條件畫(huà)出可行域,由于|
|cosθ=
,而
=(1,2)•(x,y)=x+2y,設(shè)z=x+2y,再利用z的幾何意義求最值,只需求出直線z=x+2y過(guò)可行域內(nèi)的點(diǎn)B時(shí),z最大即可.
解答:
解:先根據(jù)約束條件畫(huà)出可行域,
由于|
|cosθ=
,
而
=(1,2)•(x,y)=x+2y,
設(shè)z=x+2y,將最大值轉(zhuǎn)化為y軸上的截距最大,
當(dāng)直線z=x+2y經(jīng)過(guò)交點(diǎn)B(0,1)時(shí),z最大,
最大為:2.
則|
|cosθ的最大值為:
故答案為:
.
點(diǎn)評(píng):本題借助于平面區(qū)域特性,用幾何方法處理代數(shù)問(wèn)題,體現(xiàn)了數(shù)形結(jié)合思想、化歸思想.線性規(guī)劃中的最優(yōu)解,通常是利用平移直線法確定.巧妙識(shí)別目標(biāo)函數(shù)的幾何意義是我們研究規(guī)劃問(wèn)題的基礎(chǔ),縱觀目標(biāo)函數(shù)包括線性的與非線性,非線性問(wèn)題的介入是線性規(guī)劃問(wèn)題的拓展與延伸,使得規(guī)劃問(wèn)題得以深化.