【題目】已知函數(shù)在時取得極值且有兩個零點.
(1)求的值與實數(shù)的取值范圍;
(2)記函數(shù)兩個相異零點,求證:.
【答案】(1);(2)證明見解析.
【解析】
(1)先對函數(shù)求導(dǎo),根據(jù)極值點求出,得到函數(shù)解析式,再由有兩個零點,得到方程有2個不同實根,令,根據(jù)導(dǎo)數(shù)的方法研究單調(diào)性與最值,即可求出的取值范圍;
(2)利用函數(shù)零點的性質(zhì),結(jié)合函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系,進(jìn)行轉(zhuǎn)化即可證明不等式.
(1)因為,所以,
又在時取得極值,所以,即;
所以,
因為有兩個零點,所以方程有2個不同實根,
令,則,
由得;由得;
所以函數(shù)在上單調(diào)遞增;在上單調(diào)遞減,
所以,又時,;時,;
因此,要使方程有2個不同實根,只需與有兩不同交點,
所以;
(2)因為函數(shù)兩個相異零點,所以,①;
即,即②;
又等價于,即③;
由①②③可得;
不妨令,則,
上式可化為;
設(shè),則在上恒成立;
故函數(shù)在上單調(diào)遞增;
所以,即不等式成立;
因此,所證不等式成立.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:函數(shù)。
(I)若曲線在點(,0)處的切線為x軸,求a的值;
(II)求函數(shù)在[0,l]上的最大值和最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在處取得極值,求在處的切線方程;
(2)討論的單調(diào)性;
(3)若函數(shù)在上無零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義域為的周期為3的奇函數(shù),且當(dāng)時,,則方程在區(qū)間上的解得個數(shù)是( )
A. B. 6 C. 7 D. 9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線:,直線與交于,兩點,.
(1)求的方程;
(2)斜率為()的直線過線段的中點,與交于兩點,直線分別交直線于兩點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“微信運動”已經(jīng)成為當(dāng)下熱門的健身方式,韓梅梅的微信朋友圈內(nèi)有800為好友參與了“微信運動”.他隨機抽取了50為微信好友(男、女各25人),統(tǒng)計其在某一天的走路步數(shù).其中女性好友的走路步數(shù)數(shù)據(jù)記錄如下:
12860 8320 10231 6734 7323 8430 3200 4543 11123 9860
8753 6454 7292 4850 10222 9734 7944 9117 6421 2980
1123 1786 2436 3876 4326
男性好友走路步數(shù)情況可以分為五個類別(0-2000步)(說明:“0-2000”表示大于等于0,小于等于2000,下同),(2001-5000)、(5001-8000)、(8001-10000步)、(10001步及以上),且三中類型的人數(shù)比例為,將統(tǒng)計結(jié)果繪制如圖所示的柱形圖.
若某人一天的走路步數(shù)超過8000步則被系統(tǒng)評定為“積極型”,否則被系統(tǒng)評定為“懈怠型”.
(1)若以韓梅梅抽取的好友當(dāng)天行走步數(shù)的頻率分布來估計所有微信好友每日走路步數(shù)的概率分布,請估計韓梅梅的微信好友圈里參與“微信運動”的800名好友中,每天走路步數(shù)在5001-10000步的人數(shù);
(2)請根據(jù)選取的樣本數(shù)據(jù)完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為“評定類型”與“性別”有關(guān)?
積極型 | 懈怠型 | 總計 | |
男 | 25 | ||
女 | 25 | ||
總計 | 30 |
(3)若從韓梅梅當(dāng)天選取的步數(shù)大于10000的好友中按男女比例分層選取5人進(jìn)行身體狀況調(diào)查,然后再從這5位好友中選取2人進(jìn)行訪談,求至少有一位女性好友訪談的概率.
參考公式:,其中.
臨界值表:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了如圖所示的折線圖.
根據(jù)該折線圖,下列結(jié)論錯誤的是( )
A. 月接待游客量逐月增加
B. 年接待游客量逐年增加
C. 各年的月接待游客量高峰期大致在7,8月
D. 各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)證明:;
(2)證明:對任何正整數(shù)n,存在多項式函數(shù),使得對所有實數(shù)x均成立,其中均為整數(shù),當(dāng)n為奇數(shù)時,,當(dāng)n為偶數(shù)時,;
(3)利用(2)的結(jié)論判斷是否為有理數(shù)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com