【題目】已知圓與曲線有三個不同的交點.
(1)求圓的方程;
(2)已知點是軸上的動點, , 分別切圓于, 兩點.
①若,求及直線的方程;
②求證:直線恒過定點.
【答案】(1);(2)①或;②過定點.
【解析】試題分析:(1)由得或。直線與圓相交,故直線與圓相切,所以可用圓心到直線的距離等于,可求得;(2)①設(shè)直線, 交于點,由弦長、勾股定理可求|MP|,在直角三角形AMQ,由三角形相似得,求得,設(shè)點,由距離公式求點的坐標(biāo),再結(jié)合點M的坐標(biāo)求直線MQ的方程;②設(shè)點,求過點Q、M的圓的方程,弦AB為兩圓的公共弦,求直線AB的方程,由方程求定點的坐標(biāo)。
試題解析:(1)因為直線與圓相切,
故圓心到直線的距離為,即: , .
所以圓的方程為.
(2)①設(shè)直線, 交于點,則,
又,所以,
而,所以,
設(shè),而點,由, ,
則或,
從而直線的方程為:
或.
②證明:設(shè)點,由幾何性質(zhì)可以知道, , 在以為直徑的圓上,
此圓的方程為, 為兩圓的公共弦,
兩圓方程相減得,
即,
所以過定點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某蛋糕店每天制作生日蛋糕若干個,每個生日蛋糕的成本為50元,然后以每個100元的價格出售,如果當(dāng)天賣不完,剩下的蛋糕作垃圾處理.現(xiàn)需決策此蛋糕店每天應(yīng)該制作幾個生日蛋糕,為此搜集并整理了100天生日蛋糕的日需求量(單位:個),得到如圖所示的柱狀圖,以100天記錄的各需求量的頻率作為每天各需求量發(fā)生的概率.若蛋糕店一天制作17個生日蛋糕.
(1)求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天需求量(單位:個,)的函數(shù)解析式;
(2)求當(dāng)天的利潤不低于750元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為,且.
(1)若數(shù)列是等比數(shù)列,求的值;
(2)求數(shù)列的通項公式;
(3)記,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩艘輪船都要?吭谕粋泊位,它們可能在一晝夜的任意時刻到達.甲、乙兩船?坎次坏臅r間分別為4小時與2小時,求有一艘船停靠泊位時必需等待一段時間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:,點.
(1)過點的直線與圓交與兩點,若,求直線的方程;
(2)從圓外一點向該圓引一條切線,切點記為,為坐標(biāo)原點,且滿足,求使得取得最小值時點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列各種情況下,向量終點構(gòu)成什么圖形?
(1)把所有單位向量的起點平移到同一點;
(2)把平行于某一直線的所有單位向量的起點平移到同一點;
(3)把平行于某一直線的一切向量平移到同一起點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小王于年初用50萬元購買一輛大貨車,第一年因繳納各種費用需支出6萬元,從第二年起,每年都比上一年增加支出2萬元,假定該車每年的運輸收入均為25萬元.小王在該車運輸累計收入超過總支出后,考慮將大貨車作為二手車出售,若該車在第x年年底出售,其銷售價格為(25-x)萬元(國家規(guī)定大貨車的報廢年限為10年).
(1)大貨車運輸?shù)降趲啄昴甑,該車運輸累計收入超過總支出?
(2)在第幾年年底將大貨車出售,能使小王獲得的年平均利潤最大?(利潤=累計收入+銷售收入-總支出)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨機抽取某中學(xué)甲、乙兩班各10名同學(xué),測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如下圖.
(1)根據(jù)莖葉圖判斷哪個班的平均身高較高;
(2)計算甲班的樣本方差;
(3)現(xiàn)從乙班這10名同學(xué)中隨機抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某隧道設(shè)計為雙向四車道,車道總寬為,要求通行車輛限高,隧道全長為,隧道的拱線可近似的看成半個橢圓形狀.
(1)若最大拱高為,則隧道設(shè)計的拱寬是多少?
(2)若最大拱高不小于,則應(yīng)如何設(shè)計拱高和拱寬,才能使隧道的土方工程量最小?
(注: 1.半個橢圓的面積公式為;2.隧道的土方工程量=截面面積隧道長)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com