下列命題:
①若f(x)是定義在[-1,1]上的偶函數(shù),且在[-1,0]上是增函數(shù),θ∈(
π
4
,
π
2
),則f(sin θ)>f(cos θ);
②若銳角α,β滿足cos α>sin β,則α+β<
π
2
;
③若f(x)=2cos2
x
2
-1,則f(x+π)=f(x)對x∈R恒成立;
④要得到函數(shù)y=sin(
x
2
-
π
4
)
的圖象,只需將y=sin
x
2
的圖象向右平移
π
4
個單位,
其中真命題是
 
(把你認為所有正確的命題的序號都填上).
分析:對于①,聯(lián)系偶函數(shù)和增函數(shù)得到函數(shù)在[0,1]上為減函數(shù)后再解;
對于②,cos α>sin β要化成同名三角函數(shù);
③f(x)=2cos2
x
2
-1=cosx,
④函數(shù)y=sin(
x
2
-
π
4
)
的系數(shù)
1
2
要引起特別注意.
解答:解:①由已知可得函數(shù)在[0,1]上為減函數(shù),
且由于θ∈(
π
4
,
π
2
)?1>sinθ>cosθ>0,
故有f(sinθ)<f(cosθ),
故①錯;
②由已知角的范圍可得:cosα>sinβ=cos(
π
2
-β)
?α<
π
2
-β?α+β<
π
2
,
故②正確;③錯,
易知f(x)=cosx,其周期為2π,
故應有f(x)=f(x+2π)恒成立,④錯,應向右平移
π
2
個單位得到.
故答案為②
點評:本題是一道綜合題,考查了函數(shù)的性質(zhì)和三角函數(shù)中的二倍角公式以及三角函數(shù)圖象的變換等.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在下列命題中:
①若f(x)是定義在[-1,1]上的偶函數(shù),且在[-1,0]上是增函數(shù),θ∈(
π
4
,
π
2
),則f(sinθ)>f(cosθ);
②若銳角α、β滿足cosα>sinβ,則α+β<
π
2
;
③若f(x)=2cos2
x
2
-1,則f(x+π)=f(x)對x∈R恒成立;
④對于任意實數(shù)a,要使函數(shù)y=5cos(
2k+1
3
πx-
π
6
)(k∈N*)在區(qū)間[a,a+3]上的值
5
4
出現(xiàn)的次數(shù)不小于4次,又不多于8次,則k可以取2和3.       
其中真命題的序號是
②④
②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為R,則下列命題中:?
①若f(x-2)是偶函數(shù),則函數(shù)f(x)的圖象關(guān)于直線x=2對稱;?②若f(x+2)=-f(x-2),則函數(shù)f(x)的圖象關(guān)于原點對稱;?③函數(shù)y=f(2+x)與函數(shù)y=f(2-x)的圖象關(guān)于直線x=2對稱;?④函數(shù)y=f(x-2)與函數(shù)y=f(2-x)的圖象關(guān)于直線x=2對稱.?
其中正確的命題序號是
.?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知函數(shù)f(x)的定義域為R,則下列命題中:?
①若f(x-2)是偶函數(shù),則函數(shù)f(x)的圖象關(guān)于直線x=2對稱;?②若f(x+2)=-f(x-2),則函數(shù)f(x)的圖象關(guān)于原點對稱;?③函數(shù)y=f(2+x)與函數(shù)y=f(2-x)的圖象關(guān)于直線x=2對稱;?④函數(shù)y=f(x-2)與函數(shù)y=f(2-x)的圖象關(guān)于直線x=2對稱.?
其中正確的命題序號是________.?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在下列命題中:
①若f(x)是定義在[-1,1]上的偶函數(shù),且在[-1,0]上是增函數(shù),θ∈(
π
4
π
2
),則f(sinθ)>f(cosθ);
②若銳角α、β滿足cosα>sinβ,則α+β<
π
2
;
③若f(x)=2cos2
x
2
-1,則f(x+π)=f(x)對x∈R恒成立;
④對于任意實數(shù)a,要使函數(shù)y=5cos(
2k+1
3
πx-
π
6
)(k∈N*)在區(qū)間[a,a+3]上的值
5
4
出現(xiàn)的次數(shù)不小于4次,又不多于8次,則k可以取2和3.       
其中真命題的序號是______.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年湖北省黃石市大冶市華中學校高三數(shù)學滾動訓練(三)(解析版) 題型:填空題

在下列命題中:
①若f(x)是定義在[-1,1]上的偶函數(shù),且在[-1,0]上是增函數(shù),θ∈(,),則f(sinθ)>f(cosθ);
②若銳角α、β滿足cosα>sinβ,則α+β<;
③若f(x)=2cos2-1,則f(x+π)=f(x)對x∈R恒成立;
④對于任意實數(shù)a,要使函數(shù)y=5cos(πx-)(k∈N*)在區(qū)間[a,a+3]上的值出現(xiàn)的次數(shù)不小于4次,又不多于8次,則k可以取2和3.       
其中真命題的序號是   

查看答案和解析>>

同步練習冊答案