已知f(x)=x2-2009x,若f(m)=f(n),m≠n,則f(m+n)=
 
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由f(m)=f(n)得到m,n關(guān)于對稱軸x=
2009
2
對稱,從而m+n=2009,代入函數(shù)式求出即可.
解答: 解:∵f(m)=f(n),m≠n
∴(m,0),(n,0)關(guān)于對稱軸x=
2009
2
對稱,
∴m+n=2009,
∴f(2009)=20092-2009•2009=-0.
故答案為:0.
點(diǎn)評:本題考察了二次函數(shù)的圖象及性質(zhì),是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的奇函數(shù)f(x)=ax3+bx2+cx+d(a≠0)滿足以下條件:
①在x=1時有極值;
②曲線y=f(x)在點(diǎn)(0,f(0))處的切線與直線x-3y+2=0垂直.
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)設(shè)直線l1:y=kx與函數(shù)f(x)的圖象有三個不同的交點(diǎn)A,B,C,且|AB|=|BC|=5,求直線l的斜率k的值;
(Ⅲ)設(shè)g(x)=6lnx-m,若存在x∈[
1
e
,e],使g(x)<f(x),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對任意實(shí)數(shù),有(x-1)4=a0+a1(x-3)+a2(x-3)2+a3(x-3)3+a4(x-3)4,則a3的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)不等式組
x≥0
y≤2
ax-y+2≤0
表示區(qū)域為D,且圓x2+y2=4在D內(nèi)的弧長為
π
2
,則實(shí)數(shù)a的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于任意a∈(0,1)∪(1,+∞),函數(shù)f(x)=
.
1-1
1loga(x-1)
.
的反函數(shù)f-1(x)的圖象經(jīng)過的定點(diǎn)的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果f(x+π)=f(x),f(|x|)=f(x),則f(x)可能是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“?數(shù)列{an},{bn}既是等差數(shù)列,又是等比數(shù)列”( 。
A、是特稱命題并且是假命題
B、是全稱命題并且是假命題
C、是特稱命題并且是真命題
D、是全稱命題并且是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2sin(πx+
π
3
)的最小正周期為(  )
A、π
B、2
C、2π
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α∈(-
π
2
,0),sin(-α-
3
2
π)=
5
5
,則sin(-π-α)=( 。
A、
5
5
B、
2
5
5
C、-
5
5
D、-
2
5
5

查看答案和解析>>

同步練習(xí)冊答案