已知平面向量),當(dāng)時(shí),a?b的值為           ;若a=λb,則實(shí)數(shù)λ的值為              .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
=(cosα,sinα),
b
=(cosβ,sinβ)(α、β∈R).當(dāng)α=
π
2
,β=
π
6
時(shí),
a
b
的值為
 
;若
a
b
,則實(shí)數(shù)λ的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
=(
3
2
,-
1
2
)
b
=(
1
2
,
3
2
)
,若存在不為零的實(shí)數(shù)m,使得:
c
=
a
+2x
b
,
d
=-y
a
+(m-2x2)
b
,且
c
d
,
(1)試求函數(shù)y=f(x)的表達(dá)式;
(2)若m∈(0,+∞),當(dāng)f(x)在區(qū)間[0,1]上的最大值為12時(shí),求此時(shí)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
α
,
β
(
α
β
,
β
0)滿足|
α
|=1
,(1)當(dāng)|
α
-
β
|=|
α
+
β
|=2
時(shí),求|
β
|
的值;(2)當(dāng)
β
α
-
β
的夾角為120°時(shí),求|
β
|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個(gè)命題中,正確的命題序號是
(1)(4)
(1)(4)

(1)對于函數(shù)f(x)=(2x-x2)ex,f(-
2
)
是f(x)的極小值,f(
2
)
是f(x)的極大值;
(2)設(shè)回歸直線方程為y=2-2.5x,當(dāng)變量x增加一個(gè)單位時(shí),y平均增加2個(gè)單位;
(3)已知平面向量
a
=(1,1),
b
=(1,-1),則向量
1
2
a
-
3
2
b
=(-2,-1);
(4)已知P,Q為拋物線x2=2y上兩點(diǎn),點(diǎn)P,Q的橫坐標(biāo)分別為4,-2,過P、Q分別作拋物線的切線,兩切線交于A,則點(diǎn)A的縱坐標(biāo)為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
OA
=(1,4)
,
OB
=(-1,6)
,向量
OP
=
OA
+2(1-λ) 
OB
,λ∈R,O為坐標(biāo)原點(diǎn),
(1)求當(dāng)
OP
AB
時(shí),
OP
的坐標(biāo);
(2)當(dāng)|
OP
|取最小值時(shí),求
OP
AB
的夾角.

查看答案和解析>>

同步練習(xí)冊答案